Fabrication of Magnetic Nanostructures on Silicon Nitride Membranes for Magnetic Vortex Studies Using Transmission Microscopy Techniques
Language English Country United States Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Video-Audio Media
PubMed
30010671
PubMed Central
PMC6102033
DOI
10.3791/57817
Knihovny.cz E-resources
- MeSH
- Magnetics instrumentation MeSH
- Nanostructures chemistry MeSH
- Silicon Compounds chemistry MeSH
- Microscopy, Electron, Transmission methods MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- silicon nitride MeSH Browser
- Silicon Compounds MeSH
Electron and x-ray magnetic microscopies allow for high-resolution magnetic imaging down to tens of nanometers. However, the samples need to be prepared on transparent membranes which are very fragile and difficult to manipulate. We present processes for the fabrication of samples with magnetic micro- and nanostructures with spin configurations forming magnetic vortices suitable for Lorentz transmission electron microscopy and magnetic transmission x-ray microscopy studies. The samples are prepared on silicon nitride membranes and the fabrication consists of a spin coating, UV and electron-beam lithography, the chemical development of the resist, and the evaporation of the magnetic material followed by a lift-off process forming the final magnetic structures. The samples for the Lorentz transmission electron microscopy consist of magnetic nanodiscs prepared in a single lithography step. The samples for the magnetic x-ray transmission microscopy are used for time-resolved magnetization dynamic experiments, and magnetic nanodiscs are placed on a waveguide which is used for the generation of repeatable magnetic field pulses by passing an electric current through the waveguide. The waveguide is created in an extra lithography step.
See more in PubMed
Hubert A, Schäfer R. Magnetic Domains. The Analysis of Magnetic Microstructures. Berlin, Heidelberg, New York: Springer; 1998.
Cowburn RP, Koltsov DK, Adeyeye A, O ME, Welland ME, Tricker DM. Single-domain circular nanomagnets. Physical Review Letters. 1999;83(5):1042–1045.
Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T. Magnetic vortex core observation in circular dots of Permalloy. Science. 2000;289(5481):930–932. PubMed
Guslienko KY, Novosad V, Otani Y, Shima H, Fukamichi K. Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays. Physical Review B. 2001;65:024414.
Guslienko KY, Novosad V, Otani Y, Shima H, Fukamichi K. Field evolution of magnetic vortex state in ferromagnetic disks. Applied Physics Letters. 2001;78(24):3848.
Schneider M, Hoffmann H, Otto S, Haug T, Zweck J. Stability of magnetic vortices in flat submicron Permalloy cylinders. Journal of Applied Physics. 2002;92(3):1466–1472.
Van Waeyenberge B, et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature. 2006;444:461–464. PubMed
Kammerer M, et al. Magnetic vortex core reversal by excitation of spin waves. Nature Communications. 2011;2:279. PubMed PMC
Guslienko KY, Ivanov BA, Novosad V, Otani Y, Shima H, Fukamichi K. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. Journal of Applied Physics. 2002;91(10):813–823.
Urbánek M, et al. Dynamics and efficiency of magnetic vortex circulation reversal. Physical Review B. 2015;91:094415.
Uhlíř V, et al. Dynamics switching of the spin circulation in tapered magnetic nanodisks. Nature Nanotechnology. 2013;8(5):341–346. PubMed
Jung H, et al. Logic operations based on magnetic-vortex-state networks. ACS Nano. 2012;6(5):3712–3717. PubMed
Hasegawa N, Sugimoto S, Fujimori H, Kondou K, Niimi Y, Otani Y. Selective mode excitation in three-chained magnetic vortices. Applied Physics Express. 2015;8(6):063005.
Wintz S, et al. Magnetic vortex cores as tunable spin-wave emitters. Nature Nanotechnology. 2016;11:948–953. PubMed
Hopster H, Oepen HP. Magnetic Microscopy of Nanostructures. Berlin, Heidelberg: Springer; 2005.
Fischer P. Magnetic imaging with polarized soft x-rays. Journal of Physics D: Applied Physics. 2017;50(31):313002.
Vanatka M, et al. Magnetic vortex nucleation modes in static magnetic fields. AIP Advances. 2017;7(10):105103.
Constancias C, Landis S, Manakli S, Martin L, Pain L, Rio D. Electron beam lithography. In: Landis S, editor. Lithography. Hoboken, NJ: John Wiley & Sons, Inc; 2013.
Williams DB, Carter CB. Transmission Electron Microscopy. A Textbook for Materials Science. Springer; 2009.
Seshan K. Handbook of Thin-film Deposition Processes and Techniques. New York, NY: William Andrew; 2002.
Thompson A, et al. X-Ray Data Booklet. Lawrence Berkeley National Laboratory; 2000. Available from: http://xdb.lbl.gov.