Microfluidic Analyte Transport to Nanorods for Photonic and Electrochemical Sensing Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30028546
PubMed Central
PMC6120472
DOI
10.1002/chem.201802757
Knihovny.cz E-zdroje
- Klíčová slova
- biosensors, electrochemistry, microfluidics, nanoparticles, surface plasmon resonance,
- Publikační typ
- časopisecké články MeSH
There has recently been a growing use of surface bound nanorods within electrochemical and optical sensing applications. Predictions of the microfluidic rate of analyte transport to such nanorods (either individual or to an array) remain important for sensor design and data analysis; however, such predictions are difficult, as nanorod aspect ratios can vary by several orders of magnitude. In this study, through the use of numerical simulation, we propose an explicit analytical approach to predict the steady-state diffusion-limited rate of mass transport to (individual) surface bound nanorods of variable aspect ratio. We show that, when compared to simulation, this approach provides accurate estimations across a wide range of Péclet numbers.
Zobrazit více v PubMed
Cao J., Sun T., Grattan K. T., Sens. Actuators B 2014, 195, 332–351;
Mannelli I., Marco M.-P., Anal. Bioanal. Chem. 2010, 398, 2451–2469. PubMed
Alagiri M., Rameshkumar P., Pandikumar A., Microchim. Acta 2017, 184, 3069–3092;
Rasheed P. A., Sandhyarani N., Microchim. Acta 2017, 184, 981–1000.
Nusz G. J., Marinakos S. M., Curry A. C., Dahlin A., Höök F., Wax A., Chilkoti A., Anal. Chem. 2008, 80, 984–989; PubMed PMC
Zijlstra P., Paulo P. M., Orrit M., Nat. Nanotechnol. 2012, 7, 379; PubMed
Ament I., Prasad J., Henkel A., Schmachtel S., Sönnichsen C., Nano Lett. 2012, 12, 1092–1095. PubMed
Ongaro M., Ugo P., Anal. Bioanal. Chem. 2013, 405, 3715–3729; PubMed
Špačková B., Wrobel P., Bocková M., Homola J., Proc. IEEE 2016, 104, 2380–2408.
N. S. Lynn, Jr. , Homola J. I., Anal. Chem. 2016, 88, 12145–12151. PubMed
Špačková B., N. S. Lynn, Jr. , Slabý J. I., Šípová H., Homola J., ACS Photonics 2018, 5, 1019–1025.
Aoki K., Electroanalysis 1993, 5, 627–639.
Myland J. C., Oldham K. B., J. Electroanal. Chem. Interfacial Electrochem. 1990, 288, 1–14.
Szabo A., J. Phys. Chem. 1987, 91, 3108–3111.
Bruckenstein S., Janiszewska J., J. Electroanal. Chem. 2002, 538, 3–12.
Alfred L. R., Oldham K. B., J. Phys. Chem. 1996, 100, 2170–2177.
Alfred L. R., Myland J. C., Oldham K. B., J. Electroanal. Chem. Interfacial Electrochem. 1990, 280, 1–25.
Cutress I. J., Compton R. G., J. Electroanal. Chem. 2010, 645, 159–166.
Dickinson E. J., Streeter I., Compton R. G., J. Phys. Chem. C 2008, 112, 11637–11644; PubMed
Britz D., Østerby O., Strutwolf J., Electrochim. Acta 2010, 55, 5629–5635;
Ferrigno R., Brevet P., Girault H., Electrochim. acta 1997, 42, 1895–1903.
Zoski C. G., Mirkin M. V., Anal. Chem. 2002, 74, 1986–1992. PubMed
Sklyar O., Ufheil J., Heinze J., Wittstock G., Electrochim. Acta 2003, 49, 117–128.
Phillips C. G., Q. J. Mech. Appl. Math. 1990, 43, 135–159.
Stone H. A., Phys. Fluids A 1989, 1, 1112–1122.