Microfluidic Analyte Transport to Nanorods for Photonic and Electrochemical Sensing Applications

. 2018 Aug 14 ; 24 (46) : 12031-12036. [epub] 20180725

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30028546

There has recently been a growing use of surface bound nanorods within electrochemical and optical sensing applications. Predictions of the microfluidic rate of analyte transport to such nanorods (either individual or to an array) remain important for sensor design and data analysis; however, such predictions are difficult, as nanorod aspect ratios can vary by several orders of magnitude. In this study, through the use of numerical simulation, we propose an explicit analytical approach to predict the steady-state diffusion-limited rate of mass transport to (individual) surface bound nanorods of variable aspect ratio. We show that, when compared to simulation, this approach provides accurate estimations across a wide range of Péclet numbers.

Zobrazit více v PubMed

Cao J., Sun T., Grattan K. T., Sens. Actuators B 2014, 195, 332–351;

Mannelli I., Marco M.-P., Anal. Bioanal. Chem. 2010, 398, 2451–2469. PubMed

Alagiri M., Rameshkumar P., Pandikumar A., Microchim. Acta 2017, 184, 3069–3092;

Rasheed P. A., Sandhyarani N., Microchim. Acta 2017, 184, 981–1000.

Nusz G. J., Marinakos S. M., Curry A. C., Dahlin A., Höök F., Wax A., Chilkoti A., Anal. Chem. 2008, 80, 984–989; PubMed PMC

Zijlstra P., Paulo P. M., Orrit M., Nat. Nanotechnol. 2012, 7, 379; PubMed

Ament I., Prasad J., Henkel A., Schmachtel S., Sönnichsen C., Nano Lett. 2012, 12, 1092–1095. PubMed

Ongaro M., Ugo P., Anal. Bioanal. Chem. 2013, 405, 3715–3729; PubMed

Špačková B., Wrobel P., Bocková M., Homola J., Proc. IEEE 2016, 104, 2380–2408.

N. S. Lynn, Jr. , Homola J. I., Anal. Chem. 2016, 88, 12145–12151. PubMed

Špačková B., N. S. Lynn, Jr. , Slabý J. I., Šípová H., Homola J., ACS Photonics 2018, 5, 1019–1025.

Aoki K., Electroanalysis 1993, 5, 627–639.

Myland J. C., Oldham K. B., J. Electroanal. Chem. Interfacial Electrochem. 1990, 288, 1–14.

Szabo A., J. Phys. Chem. 1987, 91, 3108–3111.

Bruckenstein S., Janiszewska J., J. Electroanal. Chem. 2002, 538, 3–12.

Alfred L. R., Oldham K. B., J. Phys. Chem. 1996, 100, 2170–2177.

Alfred L. R., Myland J. C., Oldham K. B., J. Electroanal. Chem. Interfacial Electrochem. 1990, 280, 1–25.

Cutress I. J., Compton R. G., J. Electroanal. Chem. 2010, 645, 159–166.

Dickinson E. J., Streeter I., Compton R. G., J. Phys. Chem. C 2008, 112, 11637–11644; PubMed

Britz D., Østerby O., Strutwolf J., Electrochim. Acta 2010, 55, 5629–5635;

Ferrigno R., Brevet P., Girault H., Electrochim. acta 1997, 42, 1895–1903.

Zoski C. G., Mirkin M. V., Anal. Chem. 2002, 74, 1986–1992. PubMed

Sklyar O., Ufheil J., Heinze J., Wittstock G., Electrochim. Acta 2003, 49, 117–128.

Phillips C. G., Q. J. Mech. Appl. Math. 1990, 43, 135–159.

Stone H. A., Phys. Fluids A 1989, 1, 1112–1122.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...