• This record comes from PubMed

Contour interaction under photopic and scotopic conditions

. 2018 Jun 01 ; 18 (6) : 5.

Language English Country United States Media print

Document type Journal Article, Multicenter Study, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

In the present study, we asked whether contour interaction undergoes significant changes for different luminance levels in the central and peripheral visual field. This study included nine normal observers at two laboratories (five at Palacky University Olomouc, Czech Republic and four at the University of Houston, USA). Observers viewed a randomly selected Sloan letter surrounded by four equally spaced bars for several separations measured edge-to-edge in min arc. Stimuli were viewed foveally under photopic and mesopic luminances and between 5° and 12° peripherally for four different background luminances of the display monitors, corresponding to photopic, mesopic, scotopic, and dim scotopic levels. The extent of the contour interaction in the fovea is approximately 20 times smaller than in the periphery. Whereas the magnitude of foveal contour interaction markedly decreases with decreasing luminance, no consistent luminance-induced change occurs in peripheral contour interaction. The extent of contour interaction does not scale with the size of the target letter, either in the fovea or peripherally. The results support a neural origin of contour interaction consistent with the properties of center-surround antagonism.

See more in PubMed

Barlow, H. B., Fitzhugh, R., Kuffler, S. W.. (1957). Change of organization in the receptive fields of the cat's retina during dark adaptation. Journal of Physiology, 137, 338– 354. PubMed PMC

Bedell, H. E., Siderov, J., Waugh S. J., Zemanová, R., Pluháček, F., Musilová, L.. (2013). Contour interaction for foveal acuity targets at different luminances. Vision Research, 89, 90– 95. PubMed

Bisti, S., Clement, R., Maffei, L., Mecacci, L.. (1977). Spatial frequency and orientation tuning curves of visual neurons in the cat: Effects of mean luminance. Experimental Brain Research, 27, 335– 345. PubMed

Bouma, H. (1970, April 11) Interaction effects in parafoveal letter recognition. Nature, 226, 177– 178. PubMed

Chung, S. T. L., Levi, D. M., Legge, G. E.. (2001). Spatial-frequency and contrast properties of crowding. Vision Research, 41, 1833– 1850. PubMed

Cleland, B. G., Enroth-Cugell, C.. (1968). Quantitative aspects of sensitivity and summation in the cat retina. Journal of Physiology, 198, 17– 38. PubMed PMC

Danilova, M. V., Bondarko, V. M.. (2007). Foveal contour interactions and crowding effects at the resolution limit of the visual system. Journal of Vision, 7 2: 25, 1– 18, https://doi.org/10.1167/7.2.25. [PubMed] [Article] PubMed DOI PMC

Davison, A. C., Hinkley, D. V.. (2003). Bootstrap methods and their applications. Cambridge: Cambridge University; Press. ISBN 0-521-57471-4.

Derrington, A. M., Lennie, P.. (1982). The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. Journal of Physiology, 333, 343– 366. PubMed PMC

Duffy, K. R., Hubel, D. H.. (2007). Receptive field properties of neurons in the primary visual cortex under photopic and scotopic lighting conditions. Vision Research, 47, 2569– 2574. PubMed PMC

Ehrt, O., Hess, R. F.. (2005). Foveal contour interaction: Detection and discrimination. Journal of the Optical Society of America A, 22 2, 209– 216. PubMed

Flom, M. C. (1991). Contour interaction and the crowding effect. Problems in Optometry, 3 2, 237– 257.

Flom, M. C., Heath, G. G., Takahashi, E.. (1963, November 15) Contour interaction and visual resolution: contralateral effects. Science, 142, 979– 980. PubMed

Flom, M. C., Weymouth, F. W., Kahneman, D.. (1963). Visual resolution and contour interaction. Journal of the Optical Society of America, 53, 1026– 1032. PubMed

Hariharan, S., Levi, D. M., Klein, S. A.. (2005). ‘‘Crowding'' in normal and amblyopic vision assessed with Gaussian and Gabor C's. Vision Research, 45, 617– 633. PubMed

Herzog, M. H., Manassi, M.. (2015). Uncorking the bottleneck of crowding: A fresh look at object recognition. Current Opinion in Behavioral Sciences, 1, 86– 93.

Hess, R. F., Dakin, S. C., Kapoor, N.. (2000). The foveal “crowding” effect: Physics or physiology? Vision Research, 40, 365– 370. PubMed

Kaplan, E., Marcus, S., So, Y. T.. (1979). Effects of dark adaptation on spatial and temporal receptive fields in cat lateral geniculate nucleus. Journal of Physiology, 294, 561– 580. PubMed PMC

Kooi, F. L., Toet, A., Tripathy, S. P., Levi, D. M.. (1994). The effect of similarity and duration on spatial interaction in peripheral vision. Spatial Vision, 8 2, 255– 279. PubMed

Latham, K., Whitaker, D.. (1996). Relative roles of resolution and spatial interference in foveal and peripheral vision. Ophthalmic and Physiological Optics, 16 1, 49– 57. PubMed

Levi, D. M., Hariharan, S., Klein, S. A.. (2002). Suppressive and facilitatory spatial interactions in amblyopic vision. Vision Research, 42, 1379– 1394. PubMed

Levi, D. M., Klein, S. A., Hariharan, S.. (2002). Suppressive and facilitatory spatial interactions in foveal vision: Foveal crowding is simple contrast masking. Journal of Vision, 2 2: 2, 140– 166, https://doi.org/10.1167/2.2.2. [PubMed] [Article] PubMed DOI

Maffei, L., Fiorentini, A.. (1972). Retinogeniculate convergence and analysis of contrast. Journal of Neurophysiology, 35, 65– 72. PubMed

Marten-Ellis, S. M., Bedell, H. E.. (2015). Do different mechanisms mediate contour interaction and crowding in the fovea and visual periphery? Investigative Ophthalmology & Visual Science, 56, 2213.

Matteucci, P., Maraini, G., Peralta, S.. (1963). Modifications de la difficulté de séparation dans l'oil amblyope strabique à luminance mésopique. [Modifications in the difficulty of separation of the amblyopic and strabic eye, under mesopic luminance.] Archives d'Ophtalmologie, 23, 655– 658. PubMed

Muller, J. F., Dacheux, R. F.. (1997). Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation. Visual Neuroscience, 14, 395– 401. PubMed

Nandy, A. S., Tjan, B. S.. (2007). The nature of letter crowding as revealed by first- and second-order classification images. Journal of Vision, 7 2: 5, 1– 26, https://doi.org/10.1167/7.2.5. [PubMed] [Article] PubMed DOI PMC

Peichl, L., Wässle, H.. (1983). The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. Journal of Physiology, 341, 309– 324. PubMed PMC

Pelli, D. G., Palomares, M., Majaj, N. J.. (2004). Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, 4 12: 12, 1136– 1169, https://doi.org/10.1167/4.12.12. [PubMed] [Article] PubMed DOI

Pelli, D. G., Tillman, K.. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11 10, 1129– 1135. PubMed PMC

Ramoa, A. S., Freeman, R. D., Macy, A.. (1985). Comparison of response properties of cells in the cat's visual cortex at high and low luminance levels. Journal of Neurophysiology, 54, 61– 72. PubMed

Rashal, E., Yeshurun, Y.. (2014). Contrast dissimilarity effects on crowding are not simply another case of target saliency. Journal of Vision, 14 6: 9, 1– 12, https://doi.org/10.1167/14.6.9. [PubMed] [Article] PubMed DOI

Rodieck, R. W., Stone, J.. (1965). Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology, 28, 833– 849. PubMed

Siderov, J., Waugh, S. J., Bedell, H. E.. (2013). Foveal contour interaction for low contrast acuity targets. Vision Research, 77, 10– 13. PubMed

Siderov, J., Waugh, S. J., Bedell, H. E.. (2014). Foveal contour interaction on the edge: Response to “letter to the editor” by Drs. Coates and Levi. Vision Research, 96, 145– 148. PubMed

Simunovic, M. P., Calver, R.. (2004). Crowding under scotopic conditions. Vision Research, 44, 963– 969. PubMed

Takahashi, E. S. (1968). Effects of flanking contours on visual resolution at foveal and near-foveal loci. (Doctoral thesis, School of Optometry, University of California, Berkeley, CA: ).

Toet, A., Levi, D. M. (1992). The two-dimensional shape of spatial interaction zones in the parafovea. Vision Research, 32, 1349– 1357. PubMed

Tripathy, S. P., Cavanagh, P.. (2002). The extent of crowding in peripheral vision does not scale with target size. Vision Research, 42, 2357– 2369. PubMed

Virsu, V., Lee, B., Creutzfeldt, O. D.. (1977). Dark adaptation and receptive field organization of cells in the cat lateral geniculate nucleus. Experimental Brain Research, 27, 35– 50. PubMed

Wiesel, T. N., Hubel, D. H.. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115– 1156. PubMed

Wikler, K. C., Williams, R. W., Rakic, P.. (1990). Photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey. Journal of Comparative Neurology, 297 4, 499– 508. PubMed

Wolford, G., Chambers, L. (1984). Contour interaction as a function of retinal eccentricity. Perception & Psychophysics, 36, 457– 460. PubMed

Wróbel, A. (1981). Light level induced reorganization of cat's lateral geniculate nucleus receptive fields: A spatiotemporal study. Acta Neurobiologiae Experimentalis, 41 5, 447– 466. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...