Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
1278692
Academy of Finland | Biotieteiden ja Ympäristön Tutkimuksen Toimikunta (Research Council for Biosciences and Environment) - International
1310649
Academy of Finland | Biotieteiden ja Ympäristön Tutkimuksen Toimikunta (Research Council for Biosciences and Environment) - International
(personal grant)
Suomen Kulttuurirahasto (Finnish Cultural Foundation) - International
221999
Norges Forskningsråd (Research Council of Norway) - International
PubMed
30030443
PubMed Central
PMC6054633
DOI
10.1038/s41467-018-05314-1
PII: 10.1038/s41467-018-05314-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Eemian (the Last Interglacial; ca. 129-116 thousand years ago) presents a testbed for assessing environmental responses and climate feedbacks under warmer-than-present boundary conditions. However, climate syntheses for the Eemian remain hampered by lack of data from the high-latitude land areas, masking the climate response and feedbacks in the Arctic. Here we present a high-resolution (sub-centennial) record of Eemian palaeoclimate from northern Finland, with multi-model reconstructions for July and January air temperature. In contrast with the mid-latitudes of Europe, our data show decoupled seasonal trends with falling July and rising January temperatures over the Eemian, due to orbital and oceanic forcings. This leads to an oceanic Late-Eemian climate, consistent with an earlier hypothesis of glacial inception in Europe. The interglacial is further intersected by two strong cooling and drying events. These abrupt events parallel shifts in marine proxy data, linked to disturbances in the North Atlantic oceanic circulation regime.
Department of Earth Sciences VU University Amsterdam NL 1081HV Amsterdam The Netherlands
Department of Geography University of Wisconsin Madison 550 M Park St Madison WI 53706 USA
Department of Geosciences and Geography University of Helsinki PO Box 64 FI 00014 Helsinki Finland
Zobrazit více v PubMed
Hoffman JS, Clark PU, Parnell AC, He F. Regional and global sea-surface temperatures during the last interglaciation. Science. 2017;355:276–279. doi: 10.1126/science.aai8464. PubMed DOI
CAPE-Last Interglacial Project Members. Last Interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 2006;25:1383–1400. doi: 10.1016/j.quascirev.2006.01.033. DOI
Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during the past warm periods. Science349, 10.1126/science.aaa4019 (2015). PubMed
Bakker P, et al. Last interglacial temperature evolution–a model inter-comparison. Clim. Past. 2013;9:605–619. doi: 10.5194/cp-9-605-2013. DOI
Berger A, Loutre MF. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991;10:297–317. doi: 10.1016/0277-3791(91)90033-Q. DOI
Clark PU, Huybers P. Global change: interglacial and future sea level. Nature. 2009;462:856–857. doi: 10.1038/462856a. PubMed DOI
Bauch HA, et al. Climatic bisection of the last interglacial warm period in the Polar North Atlantic. Quat. Sci. Rev. 2011;30:1813–1818. doi: 10.1016/j.quascirev.2011.05.012. DOI
Capron E, et al. Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quat. Sci. Rev. 2014;103:116–133. doi: 10.1016/j.quascirev.2014.08.018. DOI
Masson-Delmotte, V. et al. Information from Paleoclimate Archives. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (ed. Stocker, T. F. et al.) 383–464 (Cambridge University Press, Cambridge, New York, 2013).
Govin A, et al. Sequence of events from the onset to the demise of the Last Interglacial: evaluating strengths and limitations of chronologies used in climatic archives. Quat. Sci. Rev. 2015;129:1–36. doi: 10.1016/j.quascirev.2015.09.018. DOI
Helmens KF. The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quat. Sci. Rev. 2014;86:115–143. doi: 10.1016/j.quascirev.2013.12.012. DOI
Kaspar F, Kühl N, Cubasch U, Litt T. A model-data comparison of European temperatures in the Eemian interglacial. Geophys. Res. Lett. 2005;32:L11703. doi: 10.1029/2005GL022456. DOI
Svendsen JI, et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 2004;23:1229–1271. doi: 10.1016/j.quascirev.2003.12.008. DOI
Miller GH, et al. Arctic amplification: can the past constrain the future? Quat. Sci. Rev. 2010;29:1779–1790. doi: 10.1016/j.quascirev.2010.02.008. DOI
Galaasen EV, et al. Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period. Science. 2014;343:1129–1132. doi: 10.1126/science.1248667. PubMed DOI
Helmens KF, et al. Major cooling intersecting peak Eemian Interglacial warmth in northern Europe. Quat. Sci. Rev. 2015;122:293–299. doi: 10.1016/j.quascirev.2015.05.018. DOI
Irvalı N, et al. Rapid switches in subpolar North Atlantic hydrography and climate during the Last Interglacial (MIS 5e) Paleoceanography. 2012;27:PA2207.
Irvalı N, et al. Evidence for regional cooling, frontal advances, and East Greenland Ice Sheet changes during the demise of the last interglacial. Quat. Sci. Rev. 2016;150:184–199. doi: 10.1016/j.quascirev.2016.08.029. DOI
Zhuravleva A, Bauch HA, Van Nieuwenhove N. Last Interglacial (MIS5e) hydrographic shifts linked to meltwater discharges from the East Greenland margin. Quat. Sci. Rev. 2017;164:95–109. doi: 10.1016/j.quascirev.2017.03.026. DOI
Zhuravleva A, Bauch HA, Spielhagen RF. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial. Glob. Planet. Chang. 2017;157:232–243. doi: 10.1016/j.gloplacha.2017.09.005. DOI
Helmens KF, Räsänen ME, Johansson P, Jungner H, Korjonen K. The Last Interglacial–Glacial cycle in NE Fennoscandia: a nearly continuous record from Sokli (Finnish Lapland) Quat. Sci. Rev. 2000;19:1605–1623. doi: 10.1016/S0277-3791(00)00004-4. DOI
Helmens KF, Johansson PW, Räsänen ME, Alexanderson H, Eskola KO. Ice-free intervals continuing into marine isotope stage 3 at Sokli in the central area of the Fennoscandian glaciations. Bull. Geol. Soc. Finl. 2007;79:17–39. doi: 10.17741/bgsf/79.1.002. DOI
Kylander ME, et al. Boreal Lake Evolution During the Eemian (MIS 5e) at Sokli, NE Finland: New Insights from XRF Core Scanning Data. Quat. Res. 2018;89:352–364. doi: 10.1017/qua.2017.84. DOI
Plikk A, et al. Development of an Eemian (MIS 5e) Interglacial palaeolake at Sokli (N Finland) inferred using multiple proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016;463:11–26. doi: 10.1016/j.palaeo.2016.09.008. DOI
Salonen JS, Seppä H, Luoto M, Bjune A, Birks HJB. A North European pollen–climate calibration set: analysing the climate response of a biological proxy using novel regression tree methods. Quat. Sci. Rev. 2012;45:95–110. doi: 10.1016/j.quascirev.2012.05.003. DOI
Kuosmanen N, et al. Long-term forest composition and its drivers in taiga forest in NW Russia. Veg. Hist. Archaeobot. 2016;25:221–236. doi: 10.1007/s00334-015-0542-y. DOI
Telford RJ, Birks HJB. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 2011;30:1272–1278. doi: 10.1016/j.quascirev.2011.03.002. DOI
Moseley GE, et al. Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps. Quat. Sci. Rev. 2015;127:229–239. doi: 10.1016/j.quascirev.2015.07.012. DOI
Vansteenberge S, et al. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): insights from a Belgian speleothem. Clim. Past. 2016;12:1445–1458. doi: 10.5194/cp-12-1445-2016. DOI
Vansteenberge S, et al. The last glacial inception in continental northwestern Europe: characterization and timing of the Late Eemian Aridity Pulse (LEAP) recorded in multiple Belgian speleothems. Geophys. Res. Abstr. 2017;19:EGU2017–EGU2980.
NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 2013;493:489–494. doi: 10.1038/nature11789. PubMed DOI
North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004;431:147–151. doi: 10.1038/nature02805. PubMed DOI
Brendryen J, Haflidason H, Sejrup HP. Norwegian Sea tephrostratigraphy of marine isotope stages 4 and 5: Prospects and problems for tephrochronology in the North Atlantic region. Quat. Sci. Rev. 2010;29:847–864. doi: 10.1016/j.quascirev.2009.12.004. DOI
Birks HH, Paus A. Osmunda regalis in the early Holocene of Western Norway. Nord. J. Bot. 1991;11:635–640. doi: 10.1111/j.1756-1051.1991.tb01276.x. DOI
van Geel B, Coope GR, van der Hammen T. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands) Rev. Palaeobot. Palynol. 1989;60:25–129. doi: 10.1016/0034-6667(89)90072-9. DOI
Lauber, K., Wagner, G., Gygax, A., Eggenberg, S. & Michel, A. Flora helvetica. (P. Haupt, Bern, 1998).
Nicholl JAL, et al. A Laurentide outburst flooding event during the Last Interglacial period. Nat. Geosci. 2012;5:901–904. doi: 10.1038/ngeo1622. DOI
Mokkedem Z, McManus JF, Oppo DW. Oceanographic dynamics at the end of the last interglacial in the subpolar North Atlantic. PNAS. 2014;111:11263–11268. doi: 10.1073/pnas.1322103111. PubMed DOI PMC
Cheddadi R, et al. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998;143:73–85. doi: 10.1016/S0031-0182(98)00067-4. DOI
Field MF, Huntley B, Müller H. Eemian climate fluctuations observed in a European pollen record. Nature. 1994;371:779–783. doi: 10.1038/371779a0. DOI
Kühl N, Litt T. Quantitative time series reconstruction of Eemian temperature at three European sites using pollen data. Veg. Hist. Archaeobot. 2003;12:205–214. doi: 10.1007/s00334-003-0019-2. DOI
Brewer S, Guiot J, Sánchez-Goñi MF, Klotz S. The climate in Europe during the Eemian: a multi-method approach using pollen data. Quat. Sci. Rev. 2008;27:2303–2315. doi: 10.1016/j.quascirev.2008.08.029. DOI
Kühl N, Litt T, Schölzel C, Hense A. Eemian and Early Weichselian temperature and precipitation variability in northern Germany. Quat. Sci. Rev. 2007;26:3311–3317. doi: 10.1016/j.quascirev.2007.10.004. DOI
Sirocko F, et al. A late Eemian aridity pulse in central Europe during the last glacial inception. Nature. 2005;436:833–836. doi: 10.1038/nature03905. PubMed DOI
Brauer A, et al. Evidence for last interglacial chronology and environmental change from Southern Europe. PNAS. 2007;104:450–455. doi: 10.1073/pnas.0603321104. PubMed DOI PMC
Meyer MC, Spötl C, Mangini A. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quat. Sci. Rev. 2008;27:476–496. doi: 10.1016/j.quascirev.2007.11.005. DOI
Loutre MF, et al. Factors controlling the last interglacial climate as simulated by LOVECLIM1.3. Clim. Past. 2014;10:1541–1565. doi: 10.5194/cp-10-1541-2014. DOI
IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. (ed. Stocker, T. F. et al.) (Cambridge University Press, Cambridge, New York, 2013).
Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature. 2018;556:191–196. doi: 10.1038/s41586-018-0006-5. PubMed DOI
Zagwijn WH. An analysis of Eemian climate in western and central Europe. Quat. Sci. Rev. 1996;15:451–469. doi: 10.1016/0277-3791(96)00011-X. DOI
Bakker P, et al. Temperature trends during the Present and Last Interglacial periods–a multi-model-data comparison. Quat. Sci. Rev. 2014;99:224–243. doi: 10.1016/j.quascirev.2014.06.031. DOI
Risebrobakken B, et al. Inception of the Northern European ice sheet due to contrasting ocean and insolation forcing. Quat. Res. 2007;67:128–135. doi: 10.1016/j.yqres.2006.07.007. DOI
Born A, Nisancioglu KH, Risebrobakken B. Late Eemian warming in the Nordic Seas as seen in proxy data and climate models. Paleoceanography. 2011;26:PA2207. doi: 10.1029/2010PA002027. DOI
Alexanderson H, Eskola KO, Helmens KF. Optical dating of a Late Quaternary sediment sequence from northern Finland. Geochronometria. 2008;32:51–59. doi: 10.2478/v10003-008-0022-9. DOI
De’ath G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology. 2002;83:1105–1117.
Therneau, T. M. & Atkinson, B. mvpart: Multivariate partitioning. R package version 1.6-1. (2013).
Cheng H, et al. Ice age terminations. Science. 2009;326:248–252. doi: 10.1126/science.1177840. PubMed DOI
Lauritzen SE. High-resolution paleotemperature proxy record during the last interglaciation in Norway from speleothems. Quat. Res. 1995;43:133–146. doi: 10.1006/qres.1995.1015. DOI
Sundqvist HS, Holmgren K, Lauritzen SE. Stable isotope variations in stalagmites from northwestern Sweden document climate and environmental changes during the early Holocene. Holocene. 2007;17:259–267. doi: 10.1177/0959683607073292. DOI
Shala S, et al. Palaeoenvironmental record of glacial lake evolution during the early Holocene at Sokli, NE Finland. Boreas. 2014;43:362–376. doi: 10.1111/bor.12043. DOI
Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI
Bronk Ramsey C. Deposition models for chronological records. Quat. Sci. Rev. 2008;27:42–60. doi: 10.1016/j.quascirev.2007.01.019. DOI
Bronk Ramsey C, Lee S. Recent and planned developments of the program OxCal. Radiocarbon. 2013;55:720–730. doi: 10.1017/S0033822200057878. DOI
Shala S, et al. Evaluating environmental drivers of Holocene changes in water chemistry and aquatic biota composition at Lake Loitsana, NE Finland. J. Paleolimnol. 2014;52:311–329.
Johansson, P. Late Weichselian deglaciation in Finnish Lapland (eds Johansson, P. & Sarala, P.) Applied Quaternary Research in the Central Part of Glaciated Terrain. 47–54 (Geological Survey of Finland, Espoo, 2007). Special Paper 46..
Stroeven AP, et al. Deglaciation of Fennoscandia. Quat. Sci. Rev. 2016;147:91–121. doi: 10.1016/j.quascirev.2015.09.016. DOI
Helmens KF, et al. Early MIS 3 glacial lake evolution, ice-marginal retreat pattern and climate at Sokli (northeastern Fennoscandia) Quat. Sci. Rev. 2009;28:1880–1894. doi: 10.1016/j.quascirev.2009.03.001. DOI
Overpeck JT, Webb T, III, Prentice IC. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 1985;23:87–108. doi: 10.1016/0033-5894(85)90074-2. DOI
Salonen JS, Helmens KF, Seppä H, Birks HJB. Pollen-based palaeoclimate reconstructions over long glacial–interglacial timescales: methodological tests based on the Holocene and MIS 5d–c deposits at Sokli, northern Finland. J. Quat. Sci. 2013;28:271–282. doi: 10.1002/jqs.2611. DOI
Bauch HA, Kandiano ES, Helmke JP. Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka. Geophys. Res. Lett. 2012;39:L11604. doi: 10.1029/2012GL051800. DOI
Bazin L, et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past. 2013;9:1715–1731. doi: 10.5194/cp-9-1715-2013. DOI
Veres D, et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past. 2013;9:1733–1748. doi: 10.5194/cp-9-1733-2013. DOI