Do the microorganisms from laboratory culture spent growth medium affect house dust mite fitness and microbiome composition?
Jazyk angličtina Země Austrálie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
17-12068S
Grantová Agentura České Republiky
PubMed
30102013
DOI
10.1111/1744-7917.12636
Knihovny.cz E-zdroje
- Klíčová slova
- diet, feces, feeding, house dust mites, microbiome, microorganisms, mites,
- MeSH
- Dermatophagoides pteronyssinus mikrobiologie MeSH
- genetická zdatnost MeSH
- kultivační média MeSH
- mikrobiota * MeSH
- populační růst MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- kultivační média MeSH
The interaction of house dust mites (HDM) and microorganisms is the key factor in the survival of these mites in human-made environments. Spent growth medium (SPGM) provides the rest of the diet, along with dead mite bodies and microorganisms. SPGM represents a source of microorganisms for the recolonization of mite food and the mite digestive tract. An experiment was performed to observe how adding SPGM to the HDM diet affects HDM population growth, the microbiome composition and the microbial respiration in microcosms. We analyzed American house dust mite (Dermatophagoides farinae) and European house dust mite (Dermatophagoides pteronyssinus) originating from control diets and diets treated with an extract of SPGM from 1- and 3-month-old mite cultures. The microbiome was described using 16S and 18S barcode sequencing. The composition of the bacterial and fungal microbiomes differed between the HDM species, but the SPGM treatment influenced only the bacterial profile of D. farinae. In the D. farinae microbiome of specimens on SPGM-treated diets compared to those of the control situation, the Lactobacillus profile decreased, while the Cardinium, Staphylococcus, Acinetobacter, and Sphingomonas profiles increased. The addition of SPGM extract decreased the microbial respiration in the microcosms with and without mites in almost all cases. Adding SPGM did not influence the population growth of D. farinae, but it had a variable effect on D. pteronyssinus. The results indicated that the HDM are marginally influenced by the microorganisms in their feces.
Crop Research Institute Prague 6 Ruzyne Czechia
Faculty of Science Department of Parasitology Charles University Prague 2 Czechia
Zobrazit více v PubMed
A'Bear, A.D., Jones, T.H. and Boddy, L. (2014) Size matters: what have we learnt from microcosm studies of decomposer fungus-invertebrate interactions? Soil Biology and Biochemistry, 78, 274-283.
Andersen, A. (1991) Nutritional value of yeast for Dermatophagoides pteronyssinus (Acari: Epidermoptidae) and the antigenic and allergenic composition of extracts during extended culturing. Journal of Medical Entomology, 28, 487-491.
Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32-46.
Arlian, L.G. (2002) Arthropod allergens and human health. Annual Review of Entomology, 47, 395-433.
Brandwein, M., Steinberg, D. and Meshner, S. (2016) Microbial biofilms and the human skin microbiome. NPJ Biofilms and Microbiomes, 2, 3. https://doi.org/10.1038/s41522-016-0004-z.
Burns, A.R., Stephens, W.Z., Stagaman, K., Wong, S., Rawls, J.F., Guillemin, K. et al. (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME Journal, 10, 655-664.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N. et al. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6, 1621-1624.
Chemidlin Prevost-Boure, N., Christen, R., Dequiedt, S., Mougel, C., Lelievre, M., Jolivet, C. et al. (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE, 6, e24166.
Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y. et al. (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42, D633-D642.
Colloff, M.J. (1998) Distribution and abundance of dust mites within homes. Allergy, 53(s48), 24-27.
de Saint Georges-Gridelet, D. (1987) Vitamin requirements of the European house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae), in relation to its fungal association. Journal of Medical Entomology, 24, 408-411.
Douglas, A.E. and Hart, B.J. (1989) The significance of the fungus Aspergillus penicillioides to the house dust mite Dermatophagoides pteronyssinus. Symbiosis, 7, 105-116.
Earley, Z.M., Akhtar, S., Green, S.J., Naqib, A., Khan, O., Cannon, A.R. et al. (2015) Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS ONE, 10, e0129996.
Edgar, R.C. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998.
Edgar, R.C. (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv.org. DO: https://doi.org/10.1101/081257. Retrieved from https://www.biorxiv.org/content/early/2016/10/15/081257. Accessed 10 April 2018.
Eraso, E., Guisantes, J.A., Martinez, J., Saenz-de-Santamaria, M., Martinez, A., Palacios, R. et al. (1997a) Kinetics of allergen expression in cultures of house dust mites, Dermatophagoides pteronyssinus and D. farinae (Acari: Pyroglyphidae). Journal of Medical Entomology, 34, 684-689.
Eraso, E., Martinez, J., Martinez, A., Palacios, R. and Guisantes, J.A. (1997b) Quality parameters for the production of mite extracts. Allergologia et Immunopathologia, 25, 113-117.
Erban, T., Di Presa, C.A., Kopecky, J., Poltronieri, P. and Hubert, J. (2013) PCR detection of the 14.5 antibacterial NlpC/P60-like Dermatophagoides pteronyssinus protein in Dermatophagoides farinae (Acari: Pyroglyphidae). Journal of Medical Entomology, 50, 931-933.
Erban, T. and Hubert, J. (2008) Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Experimental and Applied Acarology, 44, 199-212.
Erban, T., Rybanska, D., Harant, K., Hortova, B. and Hubert, J. (2016) Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Frontiers in Physiology, 7, 53. https://doi.org/10.3389/fphys.2016.00053.
Hammer, O., Harper, D.A.T. and Ryan, P.D. (2001) PAST-PAlaeontological STatistics. Retrieved from https://www.uv.es/~pardomv/pe/2001_1/past/pastprog/past. Accessed 10 April 2018.
Hanlon, R.D.G. (1981) Influence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentration. Oikos, 36, 362-367.
Hart, B.J., Crowther, D., Wilkinson, T., Biddulph, P., Ucci, M., Pretlove, S. et al. (2007) Reproduction and development of laboratory and wild house dust mites (Acari: Pyroglyphidae) and their relationship to the natural dust ecosystem. Journal of Medical Entomology, 44, 568-574.
Hay, D.B., Hart, B.J. and Douglas, A.E. (1992) Evidence refuting the contribution of the fungus Aspergillus penicillioides to the allergenicity of the house dust mite Dermatophagoides pteronyssinus. International Archives of Allergy and Immunology, 97, 86-88.
Hay, D.B., Hart, B.J. and Douglas, A.E. (1993) Effects of the fungus Aspergillus penicillioides on the house dust mite Dermatophagoides pteronyssinus: an experimental re-evaluation. Medical and Veterinary Entomology, 7, 271-274.
Hubert, J., Doleckova-Maresova, L., Hyblova, J., Kudlikova, I., Stejskal, V. and Mares, M. (2005) In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro. Experimental and Applied Acarology, 35, 281-291.
Hubert, J., Kopecky, J., Nesvorna, M., Perotti, M.A. and Erban, T. (2016) Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae). Experimental and Applied Acarology, 70, 309-327.
Hughes, A.M. (1976) The Mites of Stored Food and Houses: Technical Bulletin 9 of the Ministry of Agriculture, Fisheries and Food, 2nd edn. Her Majesty's Stationery Office, London, UK.
Kim, J.Y., Yi, M.H., Hwang, Y., Lee, J.Y., Lee, I.Y., Yong, D. et al. (2018) 16S rRNA profiling of the Dermatophagoides farinae core microbiome: Enterococcus and Bartonella. Clinical and Experimental Allergy, 48, 607-610.
Klimov, P.B. and OConnor, B. (2013) Is permanent parasitism reversible?-Critical evidence from early evolution of house dust mites. Systematic Biology, 62, 411-423.
Konakandla, B., Park, Y. and Margolies, D. (2006) Whole genome amplification of Chelex-extracted DNA from a single mite: a method for studying genetics of the predatory mite Phytoseiulus persimilis. Experimental and Applied Acarology, 40, 241-247.
Kong, H.H., Oh, J., Deming, C., Conlan, S., Grice, E.A., Beatson, M.A. et al. (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research, 22, 850-859.
Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K. and Schloss, P.D. (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 5112-5120.
Lang, J.D. and Mulla, M.S. (1978) Spatial distribution and abundance of house dust mites, Dermatophagoides spp., in homes in southern California. Environmental Entomology, 7, 121-127.
Lax, S., Smith, D.P., Hampton-Marcell, J., Owens, S.M., Handley, K.M., Scott, N.M. et al. (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345, 1048-1052.
Lussenhop, J. (1992) Mechanisms of microarthropod-microbial interactions in soil. Advances in Ecological Research, 23, 1-33.
Mathaba, L.T., Pope, C.H., Lenzo, J., Hartofillis, M., Peake, H., Moritz, R.L. et al. (2002) Isolation and characterisation of a 13.8-kDa bacteriolytic enzyme from house dust mite extracts: homology with prokaryotic proteins suggests that the enzyme could be bacterially derived. FEMS Immunology and Medical Microbiology, 33, 77-88.
Matsumoto, K. (1965) Studies on environmental factors for breeding of grain mites VII. Relationship between reproduction of mites and kind of carbohydrates in the diet. Medical Entomology and Zoology, 16, 118-122.
Naegele, A., Reboux, G., Scherer, E., Roussel, S. and Millon, L. (2013) Fungal food choices of Dermatophagoides farinae affect indoor fungi selection and dispersal. International Journal of Environmental Health Research, 23, 91-95.
Nesvorna, M., Bittner, V. and Hubert, J. (2018) The mite Tyrophagus putrescentiae hosts population-specific microbiomes that respond weakly to starvation. Microbial Ecology, 77, 488-501.
Ondov, B.D., Bergman, N.H. and Phillippy, A.M. (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics, 12, 385. https://doi.org/10.1186/1471-2105-12-385.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
Sagova-Mareckova, M., Omelka, M. and Kopecky, J. (2017) Sequential analysis of soil factors related to common scab of potatoes. FEMS Microbiology Ecology, 93, fiw201.
Saleh, S.M., Abdel-Hamid, M.M. and Rezk, H.A. (1991a) Biology of the European house dust mite, Dermatophagoides pteronyssinus (Trouessart). Acarologia, 32, 57-60.
Saleh, S.M., Kelada, N.L. and Shaker, N. (1991b) Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia, 32, 257-260.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B. et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537-7541.
Seastedt, T.R. (1984) The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29, 25-46.
Sinha, R.N., van Bronswijk, J.E.M.H. and Wallace, H.A.H. (1970) House dust allergy, mites and their fungal associations. Canadian Medical Association Journal, 103, 300-301.
Stewart, G.A., Butcher, A., Lees, K. and Ackland, J. (1986) Immunochemical and enzymatic analyses of extracts of the house dust mite Dermatophagoides pteronyssinus. Journal of Allergy and Clinical Immunology, 77, 14-24.
Tang, V.H., Stewart, G.A. and Chang, B.J. (2015) House dust mites possess a polymorphic, single domain putative peptidoglycan d,l endopeptidase belonging to the NlpC/P60 superfamily. FEBS Open Bio, 5, 813-823.
van Bronswijk, J.E.M.H. (1971) Food preference of pyroglyphid house-dust mites (Acari). Netherlands Journal of Zoology, 22, 335-340.
van Bronswijk, J.E.M.H. and Sinha, R.N. (1973) Role of fungi in the survival of Dermatophagoides (Acarina: Pyroglyphidae) in house-dust environment. Environmental Entomology, 2, 142-145.
White, J.R., Nagarajan, N. and Pop, M. (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Computational Biology, 5, e1000352.
Zchori-Fein, E. and Perlman, S.J. (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Molecular Ecology, 13, 2009-2016.
Microbial Communities of Stored Product Mites: Variation by Species and Population