• This record comes from PubMed

Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes

. 2018 Oct 01 ; 94 (10) : .

Language English Country England, Great Britain Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.

See more in PubMed

Agogue H, Brink M., Dinasquet J et al. . Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature. 2008;456:788–91. PubMed

Alawi M, Off S, Kaya M et al. . Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ Microbiol Rep. 2009;1:184–90. PubMed

Alfreider A, Baumer A, Bogensperger T et al. . CO2 assimilation strategies in stratified lakes: diversity and distribution patterns of chemolithoautotrophs. Environ Microbiol. 2017;19:2754–68. PubMed PMC

Alonso-Sáez L, Waller AS, Mende DR et al. . Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA. 2012;109:17989–94. PubMed PMC

Auguet JC, Triado-Margarit X, Nomokonova N et al. . Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J. 2012;6:1786–97. PubMed PMC

Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot. 2008;59:1525–41. PubMed

Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36. PubMed PMC

Bergauer K, Sintes E, Bleijswijk J et al. . Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior. FEMS Microb Ecol. 2013;84:461–73. PubMed PMC

Bollmann A, Sedlacek CJ, Norton J et al. . Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Stand Genomic Sci. 2013;7:469–82. PubMed PMC

Bouskill NJ, Eveillard D, Chien D et al. . Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol. 2012;14:714–29. PubMed

Callieri C, Coci M, Eckert EM et al. . Archaea and bacteria in deep lake hypolimnion: in situ dark inorganic carbon uptake. J Limnol. 2014;73:31–8.

Callieri C, Hernández-Avilés S, Salcher MM et al. . Distribution patterns and environmental correlates of Thaumarchaeota abundance in six deep subalpine lakes. Aquat Sci. 2016;78:215–25.

Daebeler A, Bodelier PLE, Yan Z et al. . Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 2014;8:2397–410. PubMed PMC

Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24:699–712. PubMed PMC

Daims H, Lebedeva E, Pjevac P et al. . Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9. PubMed PMC

Delwiche CF, Palmer JD. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol. 1996;13:873–82. PubMed

Fowler SJ, Palomo A, Dechesne A et al. . Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ Microbiol. 2018;20:1002–15. PubMed

French E, Kozlowski JA, Mukherjee M et al. . Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol. 2012;78:5773–80. PubMed PMC

Hatzenpichler R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol. 2012;78:7501–10. PubMed PMC

Hayden CJ., Beman JM. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, highaltitude lakes of the Sierra Nevada, California, USA. PLoS ONE. 2014;9:1–9. PubMed PMC

Herndl GJ, Reinthaler T, Teira E et al. . Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean, Appl Environ Microbiol. 2005;71:2303–9. PubMed PMC

Hu A, Yang Z, Yu CP et al. . Dynamics of autotrophic marine planktonic Thaumarchaeota in the East China Sea. PLoS ONE. 2013;8:e61087. PubMed PMC

Hügler M, Sievert SM. Beyond the Calvin Cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sc. 2011;3:261–89. PubMed

Hugoni M, Etien S, Bourges A et al. . Dynamics of ammonia-oxidizing archaea and bacteria in contrasted freshwater ecosystems. Res Microbiol. 2013;164:360–70. PubMed

Ingalls AE, Shah SR, Hansman RL et al. . Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci USA. 2006;103:6442–7. PubMed PMC

Jiang HC, Dong H, Yu BS et al. . Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, northwestern China. Geomicrobiol J. 2009;26:199–211.

Ke X, Angel R, Lu Y et al. . Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol. 2013;15:2275–92. PubMed

Kits KD, Sedlacek CJ, Lebedeva EV et al. . Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 2017;549:269–72. PubMed PMC

Könneke M, Bernhard AE, de la Torre JR et al. . Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6. PubMed

Könneke M, Schubert DM, Brown PC et al. . Ammonia-oxidizing archaea use the most energy efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA. 2014;111:8239–44. PubMed PMC

Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol. 2001;55:485–529. PubMed

Kovaleva OL, Tourova TP, Muyzer G et al. . Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol. 2011;75:37–47. PubMed

La Cono V, La Spada G, Arcadi E et al. . Partaking of Archaea to biogeochemical cycling in oxygen-deficient zones of meromictic saline Lake Faro (Messina, Italy). Environ Microbiol. 2013;15:1717–33. PubMed

Lam P, Jensen MM, Lavik G et al. . Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA. 2007:104:7104–9. PubMed PMC

Lawson CE, Lücker S, Complete ammonia oxidation: an important control on nitrification in engineered ecosystems?, Curr. Opin. Biotechnol., 2018;50:158–65. S0958-1669(17)30161-1 29414055 PubMed

Lücker S, Wagner M, Maixner F et al. . A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA. 2010;107:13479–84. PubMed PMC

Ludwig W, Strunk O, Westram R et al. . ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71. PubMed PMC

Mangiapia M, Scott K. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data. FEMS Microbiol Lett. 2016;363:7. PubMed

Martens-Habbena W, Berube PM, Urakawa H et al. . Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9. PubMed

Meinhardt KA, Bertagnolli A, Pannu MW et al. . Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia‐oxidizing archaea and bacteria. Environ Microbiol Rep. 2015;7:354–63. PubMed

Mukherjee M, Ray A, Post AF et al. . Identification, enumeration and diversity of nitrifying planktonic archaea and bacteria in trophic end members of the Laurentian Great Lakes. J Great Lakes Res. 2016;42:39–49.

Noguerola I, Picazo A, Llirós M et al. . Diversity of freshwater Epsilonproteobacteria and dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiol Ecol. 2015;91:fiv086. PubMed

Pachiadaki MG, Sintes E, Bergauer K et al. . Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science. 2017;358:1046–51. PubMed

Pajares S, Merino-Ibarra M, Macek M et al. . Vertical and seasonal distribution of picoplankton and functional nitrogen genes in a high-altitude warm-monomictic tropical lake. Freshwater Biol. 2017;62:1180–93.

Park HD, Noguera DR. Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. J Microbiol Biotechnol. 2008;18:1470–4. PubMed

Pester M, Maixner F, Berry D et al. . NcrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite oxidizing Nitrospira. Environ Microbiol. 2014;16:3055–71. PubMed

Pjevac P, Schauberger C, Poghosyan L et al. . AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol. 2017;8:1508. PubMed PMC

Pruesse E, Quast C, Knittel K et al. . SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96. PubMed PMC

Small GE, Bullerjahn GS, Sterner RW et al. . Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceangr. 2013;58:276–86.

Stein LY, Arp DJ, Berube PM et al. . Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonaseutropha C91: implications for niche adaptation. Environ Microbiol. 2007;9:2993–3007. PubMed

Stempfhuber B, Richter-Heitmann T, Regan KM et al. . Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil. Front Microbiol. 2015;6:1567. PubMed PMC

Stempfhuber B, Richter-Heitmann T, Bienek L et al. . Soil pH and plant diversity drive co-occurrence patterns of ammonia and nitrite oxidizer in soils from forest ecosystems. Biol Fertil Soils. 2017;53:691–700.

Tabita FR. Microbial ribulose 1,5-bisphosphate carboxylase/ oxygenase: a different perspective. Photosynth Res. 1999;60:1–28.

Tabita FR, Satagopan S, Hanson TE et al. . Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot. 2008;59:1515–24. PubMed

Tamura K, Stecher G, Peterson D et al. . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. PubMed PMC

Tolar B, King GM, Hollibaugh JT. An analysis of Thaumarchaeota populations from the Northern Gulf of Mexico. Front Microbiol. 2013;4:72. PubMed PMC

van Kessel M, Speth D, Albertsen M et al. . Complete nitrification by a single microorganism. Nature. 2015;528:555–9. PubMed PMC

Vissers EW, Anselmetti FS, Bodelier PLE et al. . Temporal and spatial coexistence of archaeal and bacterial amoA genes and gene transcripts in Lake Lucerne. Archaea. 2013a;2013:289478. PubMed PMC

Vissers EW, Blaga CI, Bodelier PLE et al. . Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiol Ecol. 2013b;83:515–26. PubMed

Wendeberg A. Fluorescence in situ hybridization for the identification of environmental microbes. Cold Spring Harb Protoc. 2010;DOI:10.1101/pdb.prot5366. PubMed

Yakimov MM, La Cono V, Denaro R. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea. Deep-Sea Res. 2009;56:748–54.

Yakimov MM, La Cono V, Smedile F et al. . Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J. 2011;5:945–61. PubMed PMC

Yamamoto M, Arai H, Ishii M et al. . Role of two 2-oxoglutarate: ferredoxin oxidoreductases in Hydrogenobacterthermophilus under aerobic and anaerobic conditions. FEMS Microbiol Lett. 2006;263:189–93. PubMed

Yilmaz LS, Parnerkar S, Noguera DR. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...