An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30157258
PubMed Central
PMC6114901
DOI
10.1371/journal.pone.0203087
PII: PONE-D-18-16322
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované MeSH
- embryo nesavčí účinky léků metabolismus MeSH
- fluorescenční mikroskopie MeSH
- geneticky modifikovaná zvířata MeSH
- hydrofobní a hydrofilní interakce MeSH
- laboratorní automatizace * MeSH
- luminescentní proteiny genetika metabolismus MeSH
- počítačové zpracování obrazu MeSH
- preklinické hodnocení léčiv metody MeSH
- štítná žláza účinky léků metabolismus MeSH
- thyreostatika farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- luminescentní proteiny MeSH
- thyreostatika MeSH
The knowledge on environmentally relevant chemicals that may interfere with thyroid signaling is scarce. Here, we present a method for the screening of goitrogens, compounds that disrupt the thyroid gland function, based on the automatic orientation of zebrafish in a glass capillary and a subsequent imaging of reporter gene fluorescence in the thyroid gland of embryos of the transgenic zebrafish line tg(tg:mCherry). The tg(tg:mCherry) reporter gene indicates a compensatory upregulation of thyroglobulin, the thyroid hormone precursor, in response to inhibition of thyroid hormone synthesis. Fish embryos were exposed to a negative control compound (3,4-dichloroaniline), or a concentration series of known goitrogenic compounds (resorcinol, methimazole, potassium perchlorate, 6-propyl-2-thiouracil, ethylenethiourea, phloroglucinol, pyrazole) with maximum exposure concentration selected based on mortality and/or solubility. Exposure to 3,4-dichloroaniline decreased the fluorescence signal. All goitrogenic compounds exhibited clear concentration-dependent inductions of reporter fluorescence 1.4 to 2.6 fold above control levels. Concentration-response modelling was used to calculate goitrogenic potencies based on EC50 values. The new automated method offers an efficient screening approach for goitrogenic activity.
Institute of Toxicology and Genetics Karlsruhe Institute of Technology Karlsruhe Germany
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
OECD. Detailed review paper on the state of the science on novel in vitro and in vivo screening and testing methods and endpoints for evaluating endocrine disruptors. Series on Testing & Assessment No. 178. Available at www.oecd.org, assessed 21.03.2018. 2012.
Lin YH, Liao CJ, Huang YH, Wu MH, Chi HC, Wu SM, et al. Thyroid hormone receptor represses miR-17 expression to enhance tumor metastasis in human hepatoma cells. Oncogene. 2013;32:4509 10.1038/onc.2013.309 PubMed DOI
Miller MD, Crofton KM, Rice DC, Zoeller RT. Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect. 2009;117:1033 10.1289/ehp.0800247 PubMed DOI PMC
Stefan M, Wei C, Lombardi A, Li CW, Concepcion ES, Inabnet WB, et al. Genetic–epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proc Natl Acad Sci U S A. 2014;111:12562–7. 10.1073/pnas.1408821111 PubMed DOI PMC
Demeneix B. Losing our minds: how environmental pollution impairs human intelligence and mental health. Oxford, UK: Oxford University Press; 2014. 312 p.
Mughal BB, Fini JB, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocrine connections. 2018;7:R160–R86. 10.1530/EC-18-0029 PubMed DOI PMC
Jarque S, Piña B. Deiodinases and thyroid metabolism disruption in teleost fish. Environ Res. 2014;135:361–75. 10.1016/j.envres.2014.09.022 PubMed DOI
Upadhyay G, Singh R, Kumar A, Kumar S, Kapoor A, Godbole MM. Severe hyperthyroidism induces mitochondria‐mediated apoptosis in rat liver. Hepatology. 2004;39:1120–30. 10.1002/hep.20085 PubMed DOI
Matthiessen P, Wheeler JR, Weltje L. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Crit Rev Toxicol. 2018;48:195–216. 10.1080/10408444.2017.1397099 PubMed DOI
Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In vitro. 2011;25:257–66. 10.1016/j.tiv.2010.08.013 PubMed DOI
Marchesini GR, Meulenberg E, Haasnoot W, Mizuguchi M, Irth H. Biosensor recognition of thyroid-disrupting chemicals using transport proteins. Anal Chem. 2006;78:1107–14. 10.1021/ac051399i PubMed DOI
Paul KB, Hedge JM, Rotroff DM, Hornung MW, Crofton KM, Simmons SO. Development of a thyroperoxidase inhibition assay for high-throughput screening. Chem Res Toxicol. 2014;27:387–99. 10.1021/tx400310w PubMed DOI
Thienpont B, Tingaud-Sequeira A, Prats E, Barata C, Babin PJ, Raldua D. Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol. 2011;45:7525–32. 10.1021/es202248h PubMed DOI
Fini J-B, Le Mével S, Turque N, Palmier K, Zalko D, Cravedi J-P, et al. An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ Sci Technol. 2007;41:5908–14. PubMed
Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, et al. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol. 2010;97:79–87. 10.1016/j.aquatox.2009.12.008 PubMed DOI
Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 2012;33:128–32. 10.1016/j.reprotox.2011.06.121 PubMed DOI
Alt B, Reibe S, Feitosa NM, Elsalini OA, Wendl T, Rohr KB. Analysis of origin and growth of the thyroid gland in zebrafish. Dev Dynam. 2006;235:1872–83. PubMed
Tonyushkina KN, Shen M-C, Ortiz-Toro T, Karlstrom RO. Embryonic exposure to excess thyroid hormone causes thyrotrope cell death. J Clin Invest. 2014;124:321–7. 10.1172/JCI70038 PubMed DOI PMC
Raldua D, Babin PJ. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol. 2009;43:6844–50. PubMed
Liu C, Yu H, Zhang X. Zebrafish embryos/larvae for rapid determination of effects on hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis: mRNA expression. Chemosphere. 2013;93:2327–32. 10.1016/j.chemosphere.2013.08.026 PubMed DOI
Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, et al. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol. 2012;372:203–16. 10.1016/j.ydbio.2012.09.011 PubMed DOI
Fetter E, Baldauf L, Fonte DFD, Ortmann J, Scholz S. Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol. 2015;57:10–20. 10.1016/j.reprotox.2015.04.012 PubMed DOI
Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF. High-throughput in vivo vertebrate screening. Nat Methods. 2010;7:634–6. 10.1038/nmeth.1481 PubMed DOI PMC
Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio): University of Oregon press; 1995.
OECD. OECD 236—Guideline for the Testing of Chemicals: Fish Embryo Acute Toxicity Test. Available at www.oecd.org. 2013.
ISO 15088. Water quality–determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio). ISO 15088:2007 (E). 2007.
Knöbel M, Busser F, Rico Rico A, Kramer NI, Hermens JLM, Hafner C, et al. Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties and exposure concentration analysis. Environ Sci Technol. 2012;46:9690–700. 10.1021/es301729q PubMed DOI
Nagel R. DarT: The embryotest with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. Alternativen zu Tierexperimenten. 2002;19 (Suppl 1/02):38–48. PubMed
Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. KNIME: The Konstanz Information Miner In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, editors. Data Analysis, Machine Learning and Applications: Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation eV, Albert-Ludwigs-Universität Freiburg, March 7–9, 2007. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 319–26.
Haber LT, Dourson ML, Allen BC, Hertzberg RC, Parker A, Vincent MJ, et al. Benchmark dose (BMD) modeling: current practice, issues, and challenges. Crit Rev Toxicol. 2018;48:387–415. 10.1080/10408444.2018.1430121 PubMed DOI
Freitas JS, Kupsco A, Diamante G, Felicio AA, Almeida EA, Schlenk D. Influence of temperature on the thyroidogenic effects of Diuron and its metabolite 3, 4-DCA in tadpoles of the American bullfrog (Lithobates catesbeianus). Environ Sci Technol. 2016;50:13095–104. 10.1021/acs.est.6b04076 PubMed DOI
Klüver N, Vogs C, Altenburger R, Escher BI, Scholz S. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test. Chemosphere. 2016;164:164–73. 10.1016/j.chemosphere.2016.08.079 PubMed DOI
van Wezel AP, Opperhuizen A. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Cr Rev Toxicol. 1995;25:255–79. PubMed
Kah M, Brown CD. Log D: Lipophilicity for ionisable compounds. Chemosphere. 2008;72:1401–8. 10.1016/j.chemosphere.2008.04.074 PubMed DOI
Wittbrodt JN, Liebel U, Gehrig J. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing. Bmc Biotechnology. 2014;14:36 10.1186/1472-6750-14-36 PubMed DOI PMC