Influenza virus infection causes global RNAPII termination defects

. 2018 Sep ; 25 (9) : 885-893. [epub] 20180903

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30177761

Grantová podpora
HHSN272201400008C NIAID NIH HHS - United States
R01 AI113186 NIAID NIH HHS - United States
S10 OD018522 NIH HHS - United States
U19 AI106754 NIAID NIH HHS - United States

Odkazy

PubMed 30177761
PubMed Central PMC10754036
DOI 10.1038/s41594-018-0124-7
PII: 10.1038/s41594-018-0124-7
Knihovny.cz E-zdroje

Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3' ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3' extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.

Cancer Cell Biology Programme Centro Nacional de Investigaciones Oncológicas CNIO Madrid Spain

Department of Cellular and Molecular Pharmacology University of California San Francisco San Francisco CA USA

Department of Genomics and Multiscale Biology Icahn School of Medicine at Mount Sinai New York NY USA

Department of Medicine Clinical Immunology Icahn School of Medicine at Mount Sinai New York NY USA

Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL USA

Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY USA

Department of Obstetrics and Gynecology Stanford University Stanford CA USA

Department of Pathology Icahn School of Medicine at Mount Sinai New York NY USA

Department of Psychiatry Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY USA

Division of Hematology and Oncology Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA

Division of Infectious Diseases Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA

Epinova Epigenetics Discovery Performance Unit Immuno Inflammation Therapy Area GlaxoSmithKline Medicines Research Centre Stevenage UK

Global Health and Emerging Pathogens Institute Icahn School of Medicine at Mount Sinai New York NY USA

Icahn Institute for Genomics and Multiscale Biology Icahn School of Medicine at Mount Sinai New York NY USA

Influenza Division National Center for Immunization and Respiratory Diseases Centers for Disease Control and Prevention Atlanta GA USA

Institute for Stem Cell Biology and Regenerative Medicine Stanford University Stanford CA USA

Institute of Molecular and Cell Biology Singapore Singapore

Laboratory of Immune Cell Epigenetics and Signaling The Rockefeller University New York NY USA

Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic

Mount Sinai Center for Therapeutics Discovery Departments of Pharmacological Sciences and Oncological Sciences Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York NY USA

Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York NY USA

Zobrazit více v PubMed

Marazzi I, Ho JS, Kim J, Manicassamy B, Dewell S, Albrecht RA, Seibert CW, Schaefer U, Jeffrey KL, Prinjha RK, Lee K, García-Sastre A, Roeder RG & Tarakhovsky A Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428–433 (2012). PubMed PMC

Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L, Fenouil R, Moshkina N, Wang ZZ, Laffleur B, Kaake RM, McGregor MJ, Haas K, Pefanis E, Albrecht RA, Pache L, Chanda S, Jen J, Ochando J, Byun M, Basu U, García-Sastre A, Krogan N, van Bakel H & Marazzi I The RNA exosome syncs IAV-RNAPII transcription to promote viral ribogenesis and infectivity. Cell 169, 679–692 (2017). PubMed PMC

Ayllon J & García-Sastre A The NS1 protein: a multitasking virulence factor. Curr. Top Microbiol. Immunol. 386, 73–107 (2015). PubMed

Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU & García-Sastre A Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439–449 (2009). PubMed PMC

Li S, Min JY, Krug RM & Sen GC Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349, 13–21 (2006). PubMed

García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P & Muster T Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–320 (1998). PubMed

Donelan NR, Basler CF & García-Sastre A A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol. 77, 13257–13266 (2003). PubMed PMC

Jackson D, Hossain MJ, Hickman D, Perez DR & Lamb RA A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 105, 4381–4386 (2008). PubMed PMC

Carrillo B, Choi JM, Bornholdt ZA, Sankaran B, Rice AP & Prasad BV The influenza A virus protein NS1 displays structural polymorphism. J. Virol. 88, 4113–4122 (2014). PubMed PMC

Hale BG Conformational plasticity of the influenza A virus NS1 protein. J. Gen. Virol. 95, 2099–2105 (2014). PubMed

Davey NE, Van Roey, K., Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H & Gibson TJ Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012). PubMed

Gitlin L, Hagai T, LaBarbera A, Solovey M & Andino R Rapid evolution of virus sequences in intrinsically disordered protein regions. PLoS Pathog. 10, e1004529 (2014). PubMed PMC

Taubenberger JK & Morens DM The pathology of influenza virus infections. Annu. Rev. Pathol. 3, 499–522 (2008). PubMed PMC

Taubenberger JK & Kash JC Insights on influenza pathogenesis from the grave. Virus Res. 162, 2–7 (2011). PubMed PMC

Taubenberger JK, Baltimore D, Doherty PC, Markel H, Morens DM, Webster RG & Wilson IA Reconstruction of the 1918 influenza virus: unexpected rewards from the past. MBio. 3, e00201–e00212 (2012). PubMed PMC

Hale BG, Randall RE, Ortín J & Jackson D The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008). PubMed

Krug RM Functions of the influenza A virus NS1 protein in antiviral defense. Curr. Opin. Virol. 12, 1–6 (2015). PubMed PMC

Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z & Naeve CW Large-scale sequence analysis of avian influenza isolates. Science 311, 1576–1580 (2006). PubMed

Neumann G, Whitt MA & Kawaoka Y A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J. Gen. Virol. 83, 2635–2662 (2002). PubMed

Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ & Davey NE Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014). PubMed

Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH & Verma IM BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477, 179–184 (2011). PubMed PMC

Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B & García-Sastre A Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc. Natl. Acad. Sci. USA 107, 11531–11536 (2010). PubMed PMC

Reardon S US suspends risky disease research. Nature 514, 411–412 (2014). PubMed

Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG & García-Sastre A Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99, 10736–10741 (2002). PubMed PMC

Hatada E & Fukuda R Binding of influenza A virus NS1 protein to dsRNA in vitro. J. Gen. Virol. 73, 3325–3329 (1992). PubMed

Nemeroff ME, Qian XY & Krug RM The influenza virus NS1 protein forms multimers in vitro and in vivo. Virology 212, 422–428 (1995). PubMed

Bornholdt ZA & Prasad BV X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 456, 985–988 (2008). PubMed PMC

Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T & Taylor JP Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015). PubMed PMC

Lin Y, Protter DS, Rosen MK & Parker R Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015). PubMed PMC

Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL & McKnight SL Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013). PubMed PMC

Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R & Rosen MK Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016). PubMed PMC

Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R & McKnight SL Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012). PubMed PMC

Harlen KM & Churchman LS The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017). PubMed

Heyn P, Salmonowicz H, Rodenfels J & Neugebauer KM Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol. 14, 752–760 (2017). PubMed PMC

Hnisz D, Shrinivas K, Young RA, Chakraborty AK & Sharp PA A phase separation model for transcriptional control. Cell 169, 13–23 (2017). PubMed PMC

Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X & Zhou Q Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018). PubMed PMC

Richard P & Manley JL Transcription termination by nuclear RNA polymerases. Genes Dev. 23, 1247–1269 (2009). PubMed PMC

Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M & Proudfoot NJ Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65, 25–38 (2017). PubMed PMC

Martinson HG An active role for splicing in 3’-end formation. Wiley Interdiscip. Rev. RNA 2, 459–470 (2011). PubMed

Misra A, Ou J, Zhu LJ & Green MR Global promotion of alternative internal exon usage by mRNA 3’ end formation factors. Mol. Cell 58, 819–831 (2015). PubMed PMC

Misra A & Green MR From polyadenylation to splicing: dual role for mRNA 3’ end formation factors. RNA Biol. 13, 259–264 (2016). PubMed PMC

Tseng CK, Wang HF, Burns AM, Schroeder MR, Gaspari M & Baumann P Human telomerase RNA processing and quality control. Cell Rep. 13, 2232–2243 (2015). PubMed

Orphanides G & Reinberg D A unified theory of gene expression. Cell 108, 439–451 (2002). PubMed

Perales R & Bentley D “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009). PubMed PMC

Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E & Jensen TH Crosstalk between mRNA 3’ end processing and transcription initiation. Mol. Cell 40, 410–422 (2010). PubMed

Gu B, Eick D & Bensaude O CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res. 41, 1591–1603 (2013). PubMed PMC

Niwa M, Rose SD & Berget SM In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990). PubMed

Dye MJ & Proudfoot NJ Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999). PubMed

Bauer DLV, Tellier M, Martinez-Alonso M, Nojima T, Proudfoot NJ, Murphy S & Fodor E Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Rep. 23, 2119–2129 (2018). PubMed PMC

Heinz, in press.

Kuo RL & Krug RM Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J. Virol. 83, 1611–1616 (2009). PubMed PMC

Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R, Habjan M, Binder M, Stefanovic A, Eberle CA, Goncalves A, Bürckstümmer T, Müller AC, Fauster A, Holze C, Lindsten K, Goodbourn S, Kochs G, Weber F, Bartenschlager R, Bowie AG, Bennett KL, Colinge J & Superti-Furga G Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487, 486–490 (2012). PubMed

Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA, Rolland T, Grace M, Dricot A, Askenazi M, Tavares M, Pevzner SJ, Abderazzaq F, Byrdsong D, Carvunis AR, Chen AA, Cheng J, Correll M, Duarte M, Fan C, Feltkamp MC, Ficarro SB, Franchi R, Garg BK, Gulbahce N, Hao T, Holthaus AM, James R, Korkhin A, Litovchick L, Mar JC, Pak TR, Rabello S, Rubio R, Shen Y, Singh S, Spangle JM, Tasan M, Wanamaker S, Webber JT, Roecklein-Canfield J, Johannsen E, Barabási AL, Beroukhim R, Kieff E, Cusick ME, Hill DE, Münger K, Marto JA, Quackenbush J, Roth FP, DeCaprio JA & Vidal M Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012). PubMed PMC

Marazzi I & Garcia-Sastre A Interference of viral effector proteins with chromatin, transcription, and the epigenome. Curr. Opin. Microbiol. 26, 123–129 (2015). PubMed

Heaton NS, Moshkina N, Fenouil R, Gardner TJ, Aguirre S, Shah PS, Zhao N, Manganaro L, Hultquist JF, Noel J, Sachs D, Hamilton J, Leon PE, Chawdury A, Tripathi S, Melegari C, Campisi L, Hai R, Metreveli G, Gamarnik AV, García-Sastre A, Greenbaum B, Simon V, Fernandez-Sesma A, Krogan NJ, Mulder LCF, van Bakel H, Tortorella D, Taunton J, Palese P & Marazzi I Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity 44, 46–58 (2016). PubMed PMC

Marazzi I, Greenbaum BD, Low DHP & Guccione E Chromatin dependencies in cancer and inflammation. Nat. Rev. Mol. Cell Biol. 19, 245–261 (2018). PubMed

Maldonado E, Cabrejos ME, Banks L & Allende JE Human papillomavirus-16 E7 protein inhibits the DNA interaction of the TATA binding transcription factor. J. Cell Biochem. 85, 663–669 (2002). PubMed

Dasgupta A Targeting TFIIH to inhibit host cell transcription by Rift Valley Fever Virus. Mol. Cell 13, 456–458 (2004). PubMed

Di Valentin E, Bontems S, Habran L, Jolois O, Markine-Goriaynoff N, Vanderplasschen A, Sadzot-Delvaux C & Piette J Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol. Chem. 386, 255–267 (2005). PubMed

Kundu P, Raychaudhuri S, Tsai W & Dasgupta A Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication. J. Virol. 79, 9702–9713 (2005). PubMed PMC

Fraser KA & Rice SA Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J. Virol. 81, 5091–5101 (2007). PubMed PMC

Geng F, Wenzel S & Tansey WP Ubiquitin and proteasomes in transcription. Annu. Rev. Biochem. 81, 177–201 (2012). PubMed PMC

Hagai T, Azia A, Babu MM & Andino R Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Rep. 7, 1729–1739 (2014). PubMed PMC

Daugherty MD & Malik HS Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012). PubMed

Garamszegi S, Franzosa EA & Xia Y Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks. PLoS Pathog. 9, e1003778 (2013). PubMed PMC

Dyson HJ, and Wright PE Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005). PubMed

Uversky VN & Dunker AK Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010). PubMed PMC

Babu MM, Kriwacki RW & Pappu RV Structural biology. Versatility from protein disorder. Science 337, 1460–1461 (2012). PubMed

Tompa P, Davey NE, Gibson TJ & Babu MM A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 (2014). PubMed

Coletta A, Pinney JW, Solís DY, Marsh J, Pettifer SR & Attwood TK Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 4, 43 (2010). PubMed PMC

Beltrao P, Albanese V, Kenner LR, Swaney DL, Burlingame A, Villen J, Lim WA, Fraser JS, Frydman J & Krogan NJ Systematic functional prioritization of protein posttranslational modifications. Cell 150, 413–425 (2012). PubMed PMC

Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP & Morgan DO Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009). PubMed PMC

Mosca R, Pache RA & Aloy P The role of structural disorder in the rewiring of protein interactions through evolution. Mol. Cell. Proteomics 11, 014969 (2012). PubMed PMC

Schrauwen EJ & Fouchier RA Host adaptation and transmission of influenza A viruses in mammals. Emerg. Microbes Infect. 3, e9 (2014). PubMed PMC

Miller MS & Palese P Peering into the crystal ball: influenza pandemics and vaccine efficacy. Cell 157, 294–299 (2014). PubMed

Taft AS, Ozawa M, Fitch A, Depasse JV, Halfmann PJ, Hill-Batorski L, Hatta M, Friedrich TC, Lopes TJ, Maher EA, Ghedin E, Macken CA, Neumann G & Kawaoka Y Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun. 6, 7491 (2015). PubMed PMC

Eswar N, Eramian D, Webb B, Shen MY & Sali A Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008). PubMed

Penkert RR, DiVittorio HM & Prehoda KE Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex. Nat. Struct. Mol. Biol. 11, 1122–1127 (2004). PubMed PMC

London N, Raveh B, Cohen E, Fathi G & Schueler-Furman O Rosetta FlexPepDock web server-high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 39, W249–253 (2011). PubMed PMC

Reverter D & Lima CD A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519–1531 (2004). PubMed

Halfmann R & Lindquist S Screening for Amyloid Aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis. J. Vis. Exp. 17, e838 (2008). PubMed PMC

Shah NB and Duncan TM Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J. Vis. Exp. 84, e51383 (2014). PubMed PMC

Martínez-Sobrido L & García-Sastre A Generation of recombinant influenza virus from plasmid DNA. J. Vis. Exp. 42, 2057 (2010). PubMed PMC

Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R & McKnight SL Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012). PubMed PMC

Cox J & Mann M MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV & Mann M Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed

The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–169 (2017). PubMed PMC

Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B & Vitek O MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014). PubMed

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D & Thomas PD PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways and data analysis tool enhancements. Nucleic Acids Res. 45, D183–189 (2017). PubMed PMC

Martin M Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & Gingeras TR STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC

Liao Y, Smyth GK & Shi W Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W & Smyth GK Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). PubMed PMC

Li B & Dewey CN RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011). PubMed PMC

Law CW, Chen Y, Shi W & Smyth GK Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 25, R29 (2014). PubMed PMC

Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA & Young RA C-myc regulates transcriptional pause release. Cell 141, 432–445 (2010). PubMed PMC

Rhoads A & Au K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–89 (2015) PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace