Influenza virus infection causes global RNAPII termination defects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
HHSN272201400008C
NIAID NIH HHS - United States
R01 AI113186
NIAID NIH HHS - United States
S10 OD018522
NIH HHS - United States
U19 AI106754
NIAID NIH HHS - United States
PubMed
30177761
PubMed Central
PMC10754036
DOI
10.1038/s41594-018-0124-7
PII: 10.1038/s41594-018-0124-7
Knihovny.cz E-zdroje
- MeSH
- chřipka lidská genetika MeSH
- lidé MeSH
- RNA-polymerasa II genetika MeSH
- terminátorové oblasti (genetika) genetika MeSH
- virulence MeSH
- virus chřipky A patogenita fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- RNA-polymerasa II MeSH
Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3' ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3' extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.
Cancer Cell Biology Programme Centro Nacional de Investigaciones Oncológicas CNIO Madrid Spain
Department of Medicine Clinical Immunology Icahn School of Medicine at Mount Sinai New York NY USA
Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL USA
Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY USA
Department of Obstetrics and Gynecology Stanford University Stanford CA USA
Department of Pathology Icahn School of Medicine at Mount Sinai New York NY USA
Institute for Stem Cell Biology and Regenerative Medicine Stanford University Stanford CA USA
Institute of Molecular and Cell Biology Singapore Singapore
Laboratory of Immune Cell Epigenetics and Signaling The Rockefeller University New York NY USA
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York NY USA
Zobrazit více v PubMed
Marazzi I, Ho JS, Kim J, Manicassamy B, Dewell S, Albrecht RA, Seibert CW, Schaefer U, Jeffrey KL, Prinjha RK, Lee K, García-Sastre A, Roeder RG & Tarakhovsky A Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428–433 (2012). PubMed PMC
Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L, Fenouil R, Moshkina N, Wang ZZ, Laffleur B, Kaake RM, McGregor MJ, Haas K, Pefanis E, Albrecht RA, Pache L, Chanda S, Jen J, Ochando J, Byun M, Basu U, García-Sastre A, Krogan N, van Bakel H & Marazzi I The RNA exosome syncs IAV-RNAPII transcription to promote viral ribogenesis and infectivity. Cell 169, 679–692 (2017). PubMed PMC
Ayllon J & García-Sastre A The NS1 protein: a multitasking virulence factor. Curr. Top Microbiol. Immunol. 386, 73–107 (2015). PubMed
Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU & García-Sastre A Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439–449 (2009). PubMed PMC
Li S, Min JY, Krug RM & Sen GC Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349, 13–21 (2006). PubMed
García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P & Muster T Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–320 (1998). PubMed
Donelan NR, Basler CF & García-Sastre A A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol. 77, 13257–13266 (2003). PubMed PMC
Jackson D, Hossain MJ, Hickman D, Perez DR & Lamb RA A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 105, 4381–4386 (2008). PubMed PMC
Carrillo B, Choi JM, Bornholdt ZA, Sankaran B, Rice AP & Prasad BV The influenza A virus protein NS1 displays structural polymorphism. J. Virol. 88, 4113–4122 (2014). PubMed PMC
Hale BG Conformational plasticity of the influenza A virus NS1 protein. J. Gen. Virol. 95, 2099–2105 (2014). PubMed
Davey NE, Van Roey, K., Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H & Gibson TJ Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012). PubMed
Gitlin L, Hagai T, LaBarbera A, Solovey M & Andino R Rapid evolution of virus sequences in intrinsically disordered protein regions. PLoS Pathog. 10, e1004529 (2014). PubMed PMC
Taubenberger JK & Morens DM The pathology of influenza virus infections. Annu. Rev. Pathol. 3, 499–522 (2008). PubMed PMC
Taubenberger JK & Kash JC Insights on influenza pathogenesis from the grave. Virus Res. 162, 2–7 (2011). PubMed PMC
Taubenberger JK, Baltimore D, Doherty PC, Markel H, Morens DM, Webster RG & Wilson IA Reconstruction of the 1918 influenza virus: unexpected rewards from the past. MBio. 3, e00201–e00212 (2012). PubMed PMC
Hale BG, Randall RE, Ortín J & Jackson D The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008). PubMed
Krug RM Functions of the influenza A virus NS1 protein in antiviral defense. Curr. Opin. Virol. 12, 1–6 (2015). PubMed PMC
Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z & Naeve CW Large-scale sequence analysis of avian influenza isolates. Science 311, 1576–1580 (2006). PubMed
Neumann G, Whitt MA & Kawaoka Y A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J. Gen. Virol. 83, 2635–2662 (2002). PubMed
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ & Davey NE Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014). PubMed
Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH & Verma IM BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477, 179–184 (2011). PubMed PMC
Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B & García-Sastre A Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc. Natl. Acad. Sci. USA 107, 11531–11536 (2010). PubMed PMC
Reardon S US suspends risky disease research. Nature 514, 411–412 (2014). PubMed
Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG & García-Sastre A Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99, 10736–10741 (2002). PubMed PMC
Hatada E & Fukuda R Binding of influenza A virus NS1 protein to dsRNA in vitro. J. Gen. Virol. 73, 3325–3329 (1992). PubMed
Nemeroff ME, Qian XY & Krug RM The influenza virus NS1 protein forms multimers in vitro and in vivo. Virology 212, 422–428 (1995). PubMed
Bornholdt ZA & Prasad BV X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 456, 985–988 (2008). PubMed PMC
Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T & Taylor JP Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015). PubMed PMC
Lin Y, Protter DS, Rosen MK & Parker R Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015). PubMed PMC
Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL & McKnight SL Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013). PubMed PMC
Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R & Rosen MK Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016). PubMed PMC
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R & McKnight SL Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012). PubMed PMC
Harlen KM & Churchman LS The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017). PubMed
Heyn P, Salmonowicz H, Rodenfels J & Neugebauer KM Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol. 14, 752–760 (2017). PubMed PMC
Hnisz D, Shrinivas K, Young RA, Chakraborty AK & Sharp PA A phase separation model for transcriptional control. Cell 169, 13–23 (2017). PubMed PMC
Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X & Zhou Q Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018). PubMed PMC
Richard P & Manley JL Transcription termination by nuclear RNA polymerases. Genes Dev. 23, 1247–1269 (2009). PubMed PMC
Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M & Proudfoot NJ Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65, 25–38 (2017). PubMed PMC
Martinson HG An active role for splicing in 3’-end formation. Wiley Interdiscip. Rev. RNA 2, 459–470 (2011). PubMed
Misra A, Ou J, Zhu LJ & Green MR Global promotion of alternative internal exon usage by mRNA 3’ end formation factors. Mol. Cell 58, 819–831 (2015). PubMed PMC
Misra A & Green MR From polyadenylation to splicing: dual role for mRNA 3’ end formation factors. RNA Biol. 13, 259–264 (2016). PubMed PMC
Tseng CK, Wang HF, Burns AM, Schroeder MR, Gaspari M & Baumann P Human telomerase RNA processing and quality control. Cell Rep. 13, 2232–2243 (2015). PubMed
Orphanides G & Reinberg D A unified theory of gene expression. Cell 108, 439–451 (2002). PubMed
Perales R & Bentley D “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009). PubMed PMC
Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E & Jensen TH Crosstalk between mRNA 3’ end processing and transcription initiation. Mol. Cell 40, 410–422 (2010). PubMed
Gu B, Eick D & Bensaude O CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res. 41, 1591–1603 (2013). PubMed PMC
Niwa M, Rose SD & Berget SM In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990). PubMed
Dye MJ & Proudfoot NJ Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999). PubMed
Bauer DLV, Tellier M, Martinez-Alonso M, Nojima T, Proudfoot NJ, Murphy S & Fodor E Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Rep. 23, 2119–2129 (2018). PubMed PMC
Heinz, in press.
Kuo RL & Krug RM Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J. Virol. 83, 1611–1616 (2009). PubMed PMC
Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R, Habjan M, Binder M, Stefanovic A, Eberle CA, Goncalves A, Bürckstümmer T, Müller AC, Fauster A, Holze C, Lindsten K, Goodbourn S, Kochs G, Weber F, Bartenschlager R, Bowie AG, Bennett KL, Colinge J & Superti-Furga G Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487, 486–490 (2012). PubMed
Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA, Rolland T, Grace M, Dricot A, Askenazi M, Tavares M, Pevzner SJ, Abderazzaq F, Byrdsong D, Carvunis AR, Chen AA, Cheng J, Correll M, Duarte M, Fan C, Feltkamp MC, Ficarro SB, Franchi R, Garg BK, Gulbahce N, Hao T, Holthaus AM, James R, Korkhin A, Litovchick L, Mar JC, Pak TR, Rabello S, Rubio R, Shen Y, Singh S, Spangle JM, Tasan M, Wanamaker S, Webber JT, Roecklein-Canfield J, Johannsen E, Barabási AL, Beroukhim R, Kieff E, Cusick ME, Hill DE, Münger K, Marto JA, Quackenbush J, Roth FP, DeCaprio JA & Vidal M Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012). PubMed PMC
Marazzi I & Garcia-Sastre A Interference of viral effector proteins with chromatin, transcription, and the epigenome. Curr. Opin. Microbiol. 26, 123–129 (2015). PubMed
Heaton NS, Moshkina N, Fenouil R, Gardner TJ, Aguirre S, Shah PS, Zhao N, Manganaro L, Hultquist JF, Noel J, Sachs D, Hamilton J, Leon PE, Chawdury A, Tripathi S, Melegari C, Campisi L, Hai R, Metreveli G, Gamarnik AV, García-Sastre A, Greenbaum B, Simon V, Fernandez-Sesma A, Krogan NJ, Mulder LCF, van Bakel H, Tortorella D, Taunton J, Palese P & Marazzi I Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity 44, 46–58 (2016). PubMed PMC
Marazzi I, Greenbaum BD, Low DHP & Guccione E Chromatin dependencies in cancer and inflammation. Nat. Rev. Mol. Cell Biol. 19, 245–261 (2018). PubMed
Maldonado E, Cabrejos ME, Banks L & Allende JE Human papillomavirus-16 E7 protein inhibits the DNA interaction of the TATA binding transcription factor. J. Cell Biochem. 85, 663–669 (2002). PubMed
Dasgupta A Targeting TFIIH to inhibit host cell transcription by Rift Valley Fever Virus. Mol. Cell 13, 456–458 (2004). PubMed
Di Valentin E, Bontems S, Habran L, Jolois O, Markine-Goriaynoff N, Vanderplasschen A, Sadzot-Delvaux C & Piette J Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol. Chem. 386, 255–267 (2005). PubMed
Kundu P, Raychaudhuri S, Tsai W & Dasgupta A Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication. J. Virol. 79, 9702–9713 (2005). PubMed PMC
Fraser KA & Rice SA Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J. Virol. 81, 5091–5101 (2007). PubMed PMC
Geng F, Wenzel S & Tansey WP Ubiquitin and proteasomes in transcription. Annu. Rev. Biochem. 81, 177–201 (2012). PubMed PMC
Hagai T, Azia A, Babu MM & Andino R Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Rep. 7, 1729–1739 (2014). PubMed PMC
Daugherty MD & Malik HS Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012). PubMed
Garamszegi S, Franzosa EA & Xia Y Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks. PLoS Pathog. 9, e1003778 (2013). PubMed PMC
Dyson HJ, and Wright PE Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005). PubMed
Uversky VN & Dunker AK Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010). PubMed PMC
Babu MM, Kriwacki RW & Pappu RV Structural biology. Versatility from protein disorder. Science 337, 1460–1461 (2012). PubMed
Tompa P, Davey NE, Gibson TJ & Babu MM A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 (2014). PubMed
Coletta A, Pinney JW, Solís DY, Marsh J, Pettifer SR & Attwood TK Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 4, 43 (2010). PubMed PMC
Beltrao P, Albanese V, Kenner LR, Swaney DL, Burlingame A, Villen J, Lim WA, Fraser JS, Frydman J & Krogan NJ Systematic functional prioritization of protein posttranslational modifications. Cell 150, 413–425 (2012). PubMed PMC
Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP & Morgan DO Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009). PubMed PMC
Mosca R, Pache RA & Aloy P The role of structural disorder in the rewiring of protein interactions through evolution. Mol. Cell. Proteomics 11, 014969 (2012). PubMed PMC
Schrauwen EJ & Fouchier RA Host adaptation and transmission of influenza A viruses in mammals. Emerg. Microbes Infect. 3, e9 (2014). PubMed PMC
Miller MS & Palese P Peering into the crystal ball: influenza pandemics and vaccine efficacy. Cell 157, 294–299 (2014). PubMed
Taft AS, Ozawa M, Fitch A, Depasse JV, Halfmann PJ, Hill-Batorski L, Hatta M, Friedrich TC, Lopes TJ, Maher EA, Ghedin E, Macken CA, Neumann G & Kawaoka Y Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun. 6, 7491 (2015). PubMed PMC
Eswar N, Eramian D, Webb B, Shen MY & Sali A Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008). PubMed
Penkert RR, DiVittorio HM & Prehoda KE Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex. Nat. Struct. Mol. Biol. 11, 1122–1127 (2004). PubMed PMC
London N, Raveh B, Cohen E, Fathi G & Schueler-Furman O Rosetta FlexPepDock web server-high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 39, W249–253 (2011). PubMed PMC
Reverter D & Lima CD A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519–1531 (2004). PubMed
Halfmann R & Lindquist S Screening for Amyloid Aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis. J. Vis. Exp. 17, e838 (2008). PubMed PMC
Shah NB and Duncan TM Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J. Vis. Exp. 84, e51383 (2014). PubMed PMC
Martínez-Sobrido L & García-Sastre A Generation of recombinant influenza virus from plasmid DNA. J. Vis. Exp. 42, 2057 (2010). PubMed PMC
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R & McKnight SL Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012). PubMed PMC
Cox J & Mann M MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV & Mann M Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–169 (2017). PubMed PMC
Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B & Vitek O MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014). PubMed
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D & Thomas PD PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways and data analysis tool enhancements. Nucleic Acids Res. 45, D183–189 (2017). PubMed PMC
Martin M Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & Gingeras TR STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Liao Y, Smyth GK & Shi W Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W & Smyth GK Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). PubMed PMC
Li B & Dewey CN RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011). PubMed PMC
Law CW, Chen Y, Shi W & Smyth GK Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 25, R29 (2014). PubMed PMC
Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA & Young RA C-myc regulates transcriptional pause release. Cell 141, 432–445 (2010). PubMed PMC
Rhoads A & Au K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–89 (2015) PubMed PMC