Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential

. 2018 Nov ; 25 (31) : 31368-31380. [epub] 20180908

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30196460
Odkazy

PubMed 30196460
DOI 10.1007/s11356-018-3127-3
PII: 10.1007/s11356-018-3127-3
Knihovny.cz E-zdroje

The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 μg g-1 in leaf, followed by BL with 1769 μg g-1, and STM with 1606 μg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.

Zobrazit více v PubMed

Front Plant Sci. 2016 Sep 27;7:1438 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432 PubMed

Ecotoxicol Environ Saf. 2012 Jun;80:20-7 PubMed

J Hazard Mater. 2012 Feb 15;203-204:86-92 PubMed

Photosynth Res. 1986 Jan;10(1-2):51-62 PubMed

Chemosphere. 2014 Mar;99:56-63 PubMed

Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):160-6 PubMed

Bull Environ Contam Toxicol. 2000 Apr;64(4):489-96 PubMed

New Phytol. 2008;178(1):92-102 PubMed

Int J Phytoremediation. 2014;16(7-12):982-1017 PubMed

Sci Rep. 2017 Feb 07;7:42039 PubMed

Biol Trace Elem Res. 1992 Apr-Jun;33:1-21 PubMed

Z Naturforsch C. 2005 Mar-Apr;60(3-4):349-56 PubMed

J Colloid Interface Sci. 2009 Jun 15;334(2):132-8 PubMed

Clin Toxicol. 1980 Sep;17(2):171-230 PubMed

J Plant Physiol. 2012 Feb 15;169(3):275-84 PubMed

Biochim Biophys Acta. 2016 Sep;1857(9):1479-1489 PubMed

Bull Environ Contam Toxicol. 2015 Oct;95(4):452-8 PubMed

Anal Bioanal Chem. 2002 Feb;372(3):473-80 PubMed

Environ Res. 2018 Jul;164:288-301 PubMed

Environ Sci Pollut Res Int. 2014 Jun;21(12):7773-80 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1388-91 PubMed

Sci Total Environ. 1989 Jul 1;83(1-2):13-34 PubMed

Biochim Biophys Acta. 2014 Apr;1837(4):481-94 PubMed

Environ Res. 2013 Aug;125:75-81 PubMed

Int J Phytoremediation. 2006;8(3):187-98 PubMed

Biochim Biophys Acta. 1975 Jan 31;376(1):105-15 PubMed

Environ Int. 2005 Feb;31(2):243-9 PubMed

Nat Biotechnol. 1997 Oct;15(10):988-91 PubMed

Plant Physiol. 2004 May;135(1):377-83 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Physiol Plant. 2008 Feb;132(2):236-53 PubMed

Photosynth Res. 2005 Dec;86(3):373-89 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...