Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30196460
DOI
10.1007/s11356-018-3127-3
PII: 10.1007/s11356-018-3127-3
Knihovny.cz E-zdroje
- Klíčová slova
- Arundo donax L., Ecotypes, Hyperaccumulation, Photosynthesis, Phytoremediation, Sodium-selenate,
- MeSH
- biodegradace * MeSH
- biomasa MeSH
- ekotyp MeSH
- fluorescenční spektrometrie MeSH
- kyselina selenová metabolismus toxicita MeSH
- lipnicovité účinky léků metabolismus MeSH
- selen metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina selenová MeSH
- selen MeSH
The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 μg g-1 in leaf, followed by BL with 1769 μg g-1, and STM with 1606 μg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.
Department of Biological Sciences University of South Carolina Columbia SC USA
Faculty of Science University of Ostrava Ostrava Czech Republic
Soil and Water Department Faculty of Agriculture Kafrelsheikh University Kafr El Sheikh 33516 Egypt
Zobrazit více v PubMed
Front Plant Sci. 2016 Sep 27;7:1438 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432 PubMed
Ecotoxicol Environ Saf. 2012 Jun;80:20-7 PubMed
J Hazard Mater. 2012 Feb 15;203-204:86-92 PubMed
Photosynth Res. 1986 Jan;10(1-2):51-62 PubMed
Chemosphere. 2014 Mar;99:56-63 PubMed
Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):160-6 PubMed
Bull Environ Contam Toxicol. 2000 Apr;64(4):489-96 PubMed
New Phytol. 2008;178(1):92-102 PubMed
Int J Phytoremediation. 2014;16(7-12):982-1017 PubMed
Sci Rep. 2017 Feb 07;7:42039 PubMed
Biol Trace Elem Res. 1992 Apr-Jun;33:1-21 PubMed
Z Naturforsch C. 2005 Mar-Apr;60(3-4):349-56 PubMed
J Colloid Interface Sci. 2009 Jun 15;334(2):132-8 PubMed
Clin Toxicol. 1980 Sep;17(2):171-230 PubMed
J Plant Physiol. 2012 Feb 15;169(3):275-84 PubMed
Biochim Biophys Acta. 2016 Sep;1857(9):1479-1489 PubMed
Bull Environ Contam Toxicol. 2015 Oct;95(4):452-8 PubMed
Anal Bioanal Chem. 2002 Feb;372(3):473-80 PubMed
Environ Res. 2018 Jul;164:288-301 PubMed
Environ Sci Pollut Res Int. 2014 Jun;21(12):7773-80 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1388-91 PubMed
Sci Total Environ. 1989 Jul 1;83(1-2):13-34 PubMed
Biochim Biophys Acta. 2014 Apr;1837(4):481-94 PubMed
Environ Res. 2013 Aug;125:75-81 PubMed
Int J Phytoremediation. 2006;8(3):187-98 PubMed
Biochim Biophys Acta. 1975 Jan 31;376(1):105-15 PubMed
Environ Int. 2005 Feb;31(2):243-9 PubMed
Nat Biotechnol. 1997 Oct;15(10):988-91 PubMed
Plant Physiol. 2004 May;135(1):377-83 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Physiol Plant. 2008 Feb;132(2):236-53 PubMed
Photosynth Res. 2005 Dec;86(3):373-89 PubMed