Selecting appropriate variables for detecting grassland to cropland changes using high resolution satellite data

. 2018 ; 6 () : e5487. [epub] 20180906

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30202648

Grassland is one of the most represented, while at the same time, ecologically endangered, land cover categories in the European Union. In view of the global climate change, detecting its change is growing in importance from both an environmental and a socio-economic point of view. A well-recognised tool for Land Use and Land Cover (LULC) Change Detection (CD), including grassland changes, is Remote Sensing (RS). An important aspect affecting the accuracy of change detection is finding the optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables can produce inaccurate results burdened with a number of uncertainties. The aim of our study is to find the most suitable variables for the detection of grassland to cropland change, based on a pair of high resolution images acquired by the Landsat 8 satellite and from the vector database Land Parcel Identification System (LPIS). In total, 59 variables were used to create models using Generalised Linear Models (GLM), the quality of which was verified through multi-temporal object-based change detection. Satisfactory accuracy for the detection of grassland to cropland change was achieved using all of the statistically identified models. However, a three-variable model can be recommended for practical use, namely by combining the Normalised Difference Vegetation Index (NDVI), Wetness and Fifth components of Tasselled Cap. Increasing number of variables did not significantly improve the accuracy of detection, but rather complicated the interpretation of the results and was less accurate than detection based on the original Landsat 8 images. The results obtained using these three variables are applicable in landscape management, agriculture, subsidy policy, or in updating existing LULC databases. Further research implementing these variables in combination with spatial data obtained by other RS techniques is needed.

Zobrazit více v PubMed

Aleksandrowicz S, Turlej K, Lewiński S, Bochenek Z. Change detection algorithm for the production of land cover change maps over the European union countries. Remote Sensing. 2014;6:5976–5994. doi: 10.3390/rs6075976. DOI

Atzberger C. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing. 2013;5:949–981. doi: 10.3390/rs5020949. DOI

Bannari A, Morin D, Bonn F, Huete AR. A review of vegetation indices. Remote Sensing Reviews. 1995;13:95–120. doi: 10.1080/02757259509532298. DOI

Barry S, Elith J. Error and uncertainty in habitat models. Journal of Applied Ecology. 2006;43:413–423. doi: 10.1111/j.1365-2664.2006.01136x. DOI

Berberoglu S, Akin A. Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation. 2009;11:46–53. doi: 10.1016/j.jag.2008.06.002. DOI

Bergen KM, Brown DG, Rutherford JF, Gustafson EJ. Change detection with heterogeneous data using ecoregional stratification. statistical summaries and a land allocation algorithm. Remote Sensing of Environment. 2005;97:434–446. doi: 10.1016/j.rse.2005.03.016. DOI

Blaschke T. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing. 2010;65:2–16. doi: 10.1016/j.isprsjprs.2009.06.004. PubMed DOI PMC

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S. Biodiversity loss and its impact on humanity. Nature. 2012;489:326–326. doi: 10.1038/nature11373. PubMed DOI

Chaudhuri G, Mishra NB. Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: a comparative analysis between India and Bangladesh. Applied Geography. 2016;68:68–83. doi: 10.1016/j.apgeog.2016.01.002. DOI

Chen G, Hay GJ, Carvalho LMT, Wulder MA. Object-based change detection. International Journal of Remote Sensing. 2012;33:4434–4457. doi: 10.1080/01431161.2011.648285. DOI

Chen S, Rao Land degradation monitoring using multi-temporal Landsat TM/ETM data in a transition zone between grassland and cropland of northeast China. International Journal of Remote Sensing. 2008;29:2055–2073. doi: 10.1109/ICISE.2009.878. DOI

Congalton RG, Green K. Assessing the accuracy of remotely sensed data. New York: CRC Press; 2009.

Coppin P, Bauer M. Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews. 1996;13:207–234. doi: 10.1080/02757259609532305. DOI

Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing. 2004;25:1565–1596. doi: 10.1080/0143116031000101675. DOI

Dai X. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing. 1998;36:1566–1577. doi: 10.1109/36.718860. DOI

deLeeuw J. Introduction to Akaike (1973) information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson NL, editors. Breakthroughs in statistics: foundations and basic theory. Springer New York; New York: 1992. pp. 599–609. DOI

Dobson AJ, Barnett A. An introduction to generalized linear models. New York: CRC Press; 2008. DOI

Esch T, Metz A, Marconcini M, Keil M. Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. International Journal of Applied Earth Observation and Geoinformation. 2014;28:230–237. doi: 10.1016/j.jag.2013.12.007. DOI

European Union . Eurostat regional yearbook—2016 edition. Brussels: Publications office of the European Union; 2016. DOI

Eurostat Land cover statistics—statistics explained. 2017. http://ec.europa.eu/eurostat/statistics-explained/index.php/Land_cover_statistics#Land_cover_in_the_EU. [8 August 2017]. http://ec.europa.eu/eurostat/statistics-explained/index.php/Land_cover_statistics#Land_cover_in_the_EU

Gandhi GM, Parthiban S, Thummalu N, Christy A. Procedia computer science. New York: Elsevier B.V.; 2015. Ndvi: vegetation change detection using remote sensing and gis—a case study of Vellore district; pp. 1199–1210. DOI

Gupta SK, Shukla DP. Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India. Environmental Monitoring and Assessment. 2016;188:1–13. doi: 10.1007/s10661-016-5707-3. PubMed DOI

Hájková L, Voženílek V, Tolasz R, Kohut M, Možný M, Nekovář J, Novák M, Richterová D, Stříž M, Vávra A, Vondráková A. Atlas fenologických poměrů Česka. Univerzita Palackého v Olomouci; Olomouc: 2012.

Hussain M, Chen D, Cheng A, Wei H, Stanley D. Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing. 2013;80:91–106. doi: 10.1016/j.isprsjprs.2013.03.006. DOI

Jensen JR. Introductory digital image processing: a remote sensing perspective. Second edition. Prentice Hall; Toronto: 1996. DOI

Bhandari AK, Kumar A, Singh GK. Feature extraction using normalized difference vegetation index (NDVI): a case study of jabalpur city. Procedia Technology. 2012;6:612–621. doi: 10.1016/j.protcy.2012.10.074. DOI

Kindu M, Schneider T, Teketay D, Knoke T. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the ethiopian highlands. Remote Sensing. 2013;5:2411–2435. doi: 10.3390/rs5052411. DOI

Klouček T, Lagner O, Šímová P. How does data accuracy influence the reliability of digital viewshed models? A case study with wind turbines. Applied Geography. 2015;64:46–54. doi: 10.1016/j.apgeog.2015.09.005. DOI

Kupková L, Bičík I. Landscape transition after the collapse of communism in Czechia. Journal of Maps. 2016;5647:1–6. doi: 10.1080/17445647.2016.1195301. DOI

Liu H, Zhou Q. Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison. International Journal of Remote Sensing. 2004;25:1037–1050. doi: 10.1080/0143116031000150004. DOI

Lu D, Batistella M, Moran E. Integration of Landsat TM and SPOT HRG images for vegetation change detection in the Brazilian Amazon. Photogrammetric Engineering & Remote Sensing. 2008;74:421–430. doi: 10.14358/PERS.74.4.421. PubMed DOI PMC

Lu D, Li G, Moran E. Current situation and needs of change detection techniques. International Journal of Image and Data Fusion. 2014;5:13–38. doi: 10.1080/19479832.2013.868372. DOI

Lu D, Mausel P, Brondízios E, Moran E. Change detection techniques. International Journal of Remote Sensing. 2003;25:2365–2407. doi: 10.1080/0143116031000139863. DOI

Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. 2007;28:823–870. doi: 10.1080/01431160600746456. DOI

Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment. 2006;105:142–154. doi: 10.1016/j.rse.2006.06.018. DOI

Lyon JG, Yuan D, Lunetta RS, Elvidge CD. A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing. 1998;64:143–150.

Mas J-F. Monitoring land-cover changes: a comparison of change detection techniques. International Journal of Remote Sensing. 1999;20:139–152. doi: 10.1080/014311699213659. DOI

Moudrý V, Šímová P. Influence of positional accuracy, sample size and scale on modelling species distributions: a review. International Journal of Geographical Information Science. 2012;8816:1–13. doi: 10.1080/13658816.2012.721553. DOI

Müller H, Rufin P, Griffiths P, Barros Siqueira AJ, Hostert P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sensing of Environment. 2015;156:490–499. doi: 10.1016/j.rse.2014.10.014. DOI

Nagendra H, Mairota P, Marangi C, Lucas R, Dimopoulos P, Honrado JP, Niphadkar M, Mücherg CA, Tomaselli V, Panitsa M, Tarantino C, Manakos I, Blonda Satellite Earth observation data to identify anthropogenic pressures inselected protected areas. International Journal of Applied Earth Observation and Geoinformation. 2015;37:124–132. doi: 10.1016/j.jag.2014.10.010. DOI

Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment. 2014;148:42–57. doi: 10.1016/j.rse.2014.02.015. DOI

Otukei JR, Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation. 2010;12:S27–S31. doi: 10.1016/j.jag.2009.11.002. DOI

Pazúr R, Lieskovský J, Feranec J, Oťaheľ J. Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Applied Geography. 2014;54:118–128. doi: 10.1016/j.apgeog.2014.07.014. DOI

Pu R, Gong P, Tian Y, Miao X, Carruthers RI, Anderson GL. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada. USA. International Journal of Remote Sensing. 2008;29:3987–4011. doi: 10.1080/01431160801908095. DOI

Roy M, Ghosh S, Ghosh A. A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system. Information Sciences. 2014;269:35–47. doi: 10.1016/j.ins.2014.01.037. DOI

Roy DP, Wulder MA, Loveland TR, CE W, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment. 2014;145:154–172. doi: 10.1016/j.rse.2014.02.001. DOI

Singh A. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing. 1989;10:989–1003. doi: 10.1080/01431168908903939. DOI

Sklenicka P, Molnarova KJ, Salek M, Simova P, Vlasak J, Sekac P, Janovska V. Owner or tenant: who adopts better soil conservation practices? Land Use Policy. 2015;47:253–261. doi: 10.1016/j.landusepol.2015.04.017. DOI

Sklenicka P, Šímová P, Hrdinová K, Salek M. Changing rural landscapes along the border of Austria and the Czech Republic between 1952 and 2009: roles of political, socioeconomic and environmental factors. Applied Geography. 2014;47:89–98. doi: 10.1016/j.apgeog.2013.12.006. DOI

Smith AM, Buckley JR. Investigating RADARSAT-2 as a tool for monitoring grassland in western Canada. Canadian Journal of Remote Sensing. 2011;37:93–102. doi: 10.5589/m11-027. DOI

Sohn G, Dowman I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry and Remote Sensing. 2007;62:43–63. doi: 10.1016/j.isprsjprs.2007.01.001. DOI

Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment. 2001;75:230–244. doi: 10.1016/S0034-4257(00)00169-3. DOI

Tarantino C, Adamo M, Lucas R, Blonda P. Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data. Remote Sensing of Environment. 2016;175:65–72. doi: 10.1016/j.rse.2015.12.031. PubMed DOI PMC

Tasser E, Leitinger G, Tappeiner U. Climate change versus land-use change—what affects the mountain landscapes more? Land Use Policy. 2017;60:60–72. doi: 10.1016/j.landusepol.2016.10.019. DOI

Tewkesbury AP, Comber AJ, Tate NJ, Lamb A, Fisher PF. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment. 2015;160:1–14. doi: 10.1016/j.rse.2015.01.006. DOI

The Ministry of Agriculture of the Czech Republic LPIS—modul iLPIS. 2016. http://eagri.cz/public/web/file/2127/LPIS_modul_iLPIS_prirucka_20140831.pdf. [21 March 2017]. http://eagri.cz/public/web/file/2127/LPIS_modul_iLPIS_prirucka_20140831.pdf

Turker M, Ozdarici A. Field-based crop classification using SPOT4, SPOT5, IKONOS and QuickBird imagery for agricultural areas: a comparison study. International Journal of Remote Sensing. 2011;32:9735–9768. doi: 10.1080/01431161.2011.576710. DOI

Vorovencii I. Assessment of some remote sensing techniques used to detect land use/land cover changes in South-East Transilvania, Romania. Environmental Monitoring and Assessment. 2014;186:2685–2699. doi: 10.1007/s10661-013-3571-7. PubMed DOI

Wardlow BD, Egbert SL, Kastens JH. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S Central Great Plains. Remote Sensing of Environment. 2007;108:290–310. doi: 10.1016/j.rse.2006.11.021. DOI

Weeks ES, Ausseil AGE, Shepherd JD, Dymond JR. Remote sensing methods to detect land-use/cover changes in New Zealand’s indigenous grasslands. New Zealand Geographer. 2013;69:1–13. doi: 10.1111/Nzg.12000. DOI

Wondrade N, Dick ØB, Tveite H. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia. Environmental Monitoring and Assessment. 2014;186:1765–1780. doi: 10.1007/s10661-013-3491. PubMed DOI

Woodcock CE, Macomber SA, Pax-Lenney M, Cohen WB. Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors. Remote Sensing of Environment. 2001;78:194–203. doi: 10.1016/S0034-4257(01)00259-0. DOI

Wulder MA, White JC, Goward SN, Masek JG, Irons JR, Herold M, Cohen WB, Loveland TR, Woodcock CE. Landsat continuity: issues and opportunities for land cover monitoring. Remote Sensing of Environment. 2008;112:955–969. doi: 10.1016/j.rse.2007.07.004. DOI

Xian G, Homer C, Fry J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment. 2009;113:1133–1147. doi: 10.1016/j.rse.2009.02.004. DOI

Yin H, Pflugmacher D, Kennedy RE, Sulla-Menashe D, Hostert Mapping annual land use and land cover changes using MODIS time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014;7:3421–3427. doi: 10.1109/JSTARS.2014.2348411. DOI

Zhen Z, Quackenbush LJ, Stehman SV, Zhang L. Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification. International Journal of Remote Sensing. 2013;34:6914–6930. doi: 10.1080/01431161.2013.810822. DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.6322820.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...