Limb Skin Temperature as a Tool to Predict Orthostatic Instability

. 2018 ; 9 () : 1241. [epub] 20180905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30233412

Orthostatic instability is one of the main consequences of weightlessness or gravity challenge and plays as well a crucial role in public health, being one of the most frequent disease of aging. Therefore, the assessment of effective countermeasures, or even the possibility to predict, and thus prevent orthostatic instability is of great importance. Heat stress affects orthostatic stability and may lead to impaired consciousness and decrease in cerebral perfusion, specifically during the exposure to G-forces. Conversely, peripheral cooling can prevent orthostatic intolerance - even in normothermic healthy subjects. Indicators of peripheral vasodilation, as elevated skin surface temperatures, may mirror blood decentralization and an increased risk of orthostatic instability. Therefore, the aim of this study was to quantify orthostatic instability risk, by assessing in 20 fighter jet pilot candidates' cutaneous limb temperatures, with respect to the occurrence of G-force-induced almost loss of consciousness (ALOC), before and during exposure to a push-pull maneuver, i.e., head-down tilt, combined with lower body negative pressure. Peripheral skin temperatures from the upper and lower (both proximal and distal) extremities and core body temperature via heat-flux approach (i.e., the Double Sensor), were continuously measured before and during the maneuver. The 55% of subjects that suffered an ALOC during the procedure had higher upper arm and thigh temperatures at baseline compared to the 45% that remained stable. No difference in baseline core body temperature and distal limbs (both upper and lower) skin temperatures were found between the two groups. Therefore, peripheral skin temperature data could be considered a predicting factor for ALOC, prior to rapid onset acceleration. Moreover, these findings could also find applications in patient care settings such as in intensive care units.

Zobrazit více v PubMed

Banks R. D., Grissett J. D., Turnipseed G. T., Saunders P. L., Rupert A. H. (1994). The “push-pull effect”. Aviat. Space Environ. Med. 65 699–704. PubMed

Benni P. B., Li J. K., Chen B., Cammarota J., Amory D. W. (2003). NIRS monitoring of pilots subjected to +Gz acceleration and G-induced loss of consciousness (G-LOC). Adv. Exp. Med. Biol. 530 371–379. 10.1007/978-1-4615-0075-9_34 PubMed DOI

Blaber A. P., Hinghofer-Szalkay H., Goswami N. (2013). Blood volume redistribution during hypovolemia. Aviat. Space Environ. Med. 84 59–64. 10.3357/ASEM.3424.2013 PubMed DOI

Convertino V. A., Ludwig D. A., Cooke W. H. (2004). Stroke volume and sympathetic responses to lower-body negative pressure reveal new insight into circulatory shock in humans. Auton. Neurosci. 111 127–134. 10.1016/j.autneu.2004.02.007 PubMed DOI

Cotie L. M., Geurts C. L. M., Adams M. M. E., MacDonald M. J. (2011). Leg skin temperature with body-weight-supported treadmill and tilt-table standing training after spinal cord injury. Spinal Cord 49 149–153. 10.1038/sc.2010.52 PubMed DOI

Crandall C. G., Shibasaki M., Wilson T. E. (2010). Insufficient cutaneous vasoconstriction leading up to and during syncopal symptoms in the heat stressed human. Am. J. Physiol. Heart Circ. Physiol. 299 H1168–H1173. 10.1152/ajpheart.00290.2010 PubMed DOI PMC

Dosel P., Hanousek J., Cmiral J., Petricek J. (1998). Physiological response of pilots to the LBNP-, flight-, and centrifuge load. J. Gravit. Physiol. 5:41. PubMed

Dosel P., Hanousek J., Petricek J., Cettl L. (2007). LBNP and push-pull effect. J. Gravit. Physiol. 14 135–136. PubMed

Durand S., Cui J., Williams K. D., Crandall C. G. (2004). Skin surface cooling improves orthostatic tolerance in normothermic individuals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286 R199–R205. 10.1152/ajpregu.00394.2003 PubMed DOI

Gunga H., Sandsund M., Reinertsen R., Sattler F., Koch J. (2008). A non-invasive device to continuously determine heat strain in humans. J. Therm. Biol. 33 297–307. 10.1016/j.jtherbio.2008.03.004 DOI

Gunga H.-C., Werner A., Stahn A., Steinach M., Schlabs T., Koralewski E., et al. (2009). The Double Sensor-A non-invasive device to continuously monitor core temperature in humans on earth and in space. Respir. Physiol. Neurobiol. 169(Suppl. 1), S63–S68. 10.1016/j.resp.2009.04.005 PubMed DOI

Hachiya T., Walsh M. L., Saito M., Blaber A. P. (2010). Delayed vasoconstrictor response to venous pooling in the calf is associated with high orthostatic tolerance to LBNP. J. Appl. Physiol. 109 996–1001. 10.1152/japplphysiol.00593.2009 PubMed DOI

Hanley J. A., McNeil B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 29–36. 10.1148/radiology.143.1.7063747 PubMed DOI

Hanousek J., Dosel P., Cmiral J., Petricek J. (1997). Physiological response of pilots to the load of lower body negative pressure. J. Gravit. Physiol. 4 33–34. PubMed

Kirsch K. A., Röcker L., von Ameln H., Hrynyschyn K. (1986). The cardiac filling pressure following exercise and thermal stress. Yale J. Biol. Med. 59 257–265. PubMed PMC

Krakow K., Ries S., Daffertshofer M., Hennerici M. (2000). Simultaneous assessment of brain tissue oxygenation and cerebral perfusion during orthostatic stress. Eur. Neurol. 43 39–46. 10.1159/000008127 PubMed DOI

Lacolley P. J., Pannier B. M., Slama M. A., Cuche J. L., Hoeks A. P., Laurent S., et al. (1992). Carotid arterial haemodynamics after mild degrees of lower-body negative pressure in man. Clin. Sci. 83 535–540. 10.1042/cs0830535 PubMed DOI

Mendt S., Maggioni M. A., Nordine M., Steinach M., Opatz O., Belavý D., et al. (2017). Circadian rhythms in bed rest: monitoring core body temperature via heat-flux approach is superior to skin surface temperature. Chronobiol. Int. 34 666–676. 10.1080/07420528.2016.1224241 PubMed DOI

Robertson D. (2008). The pathophysiology and diagnosis of orthostatic hypotension. Clin. Auton. Res. 18(Suppl. 1), 2–7. 10.1007/s10286-007-1004-0 PubMed DOI

Rubinstein E. H., Sessler D. I. (1990). Skin-surface temperature gradients correlate with fingertip blood flow in humans. Anesthesiology 73 541–545. 10.1097/00000542-199009000-00027 PubMed DOI

Ryoo H. C., Sun H. H., Shender B. S., Hrebien L. (2004). Consciousness monitoring using near-infrared spectroscopy (NIRS) during high +Gz exposures. Med. Eng. Phys. 26 745–753. 10.1016/j.medengphy.2004.07.003 PubMed DOI

Schiller Y. (2003). The anatomy and physiology of the sympathetic innervation to the upper limbs. Clin. Auton. Res 13 I2–I5. 10.1007/s10286-003-1102-6 PubMed DOI

Schlader Z. J., Gagnon D., Adams A., Rivas E., Cullum C. M., Crandall C. G. (2015). Cognitive and perceptual responses during passive heat stress in younger and older adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308 R847–R854. 10.1152/ajpregu.00010.2015 PubMed DOI PMC

Self D. A., White C. D., Shaffstall R. M., Mtinangi B. L., Croft J. S., Hainsworth R. (1996). Differences between syncope resulting from rapid onset acceleration and orthostatic stress. Aviat. Space Environ. Med. 67 547–554. 10.21236/ADA333371 PubMed DOI

Shibasaki M., Davis S. L., Cui J., Low D. A., Keller D. M., Durand S., et al. (2006). Neurally mediated vasoconstriction is capable of decreasing skin blood flow during orthostasis in the heat-stressed human. J. Physiol. 575(Pt 3), 953–959. 10.1113/jphysiol.2006.112649 PubMed DOI PMC

Simonson S. R., Norsk P., Greenleaf J. E. (2003). Heart rate and blood pressure during initial LBNP do not discriminate higher and lower orthostatic tolerant men. Clin. Auton. Res. 13 422–426. 10.1007/s10286-003-0121-7 PubMed DOI

Thomas G. D. (2011). Neural control of the circulation. Adv. Physiol. Educ. 35 28–32. 10.1152/advan.00114.2010 PubMed DOI

Tripp L. D., Warm J. S., Matthews G., Chiu P. Y., Bracken R. B. (2009). On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness. Hum. Factors 51 775–784. 10.1177/0018720809359631 PubMed DOI

van Genderen M. E., Bartels S. A., Lima A., Bezemer R., Ince C., Bakker J., et al. (2013). Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth. Analg. 116 351–356. 10.1213/ANE.0b013e318274e151 PubMed DOI

Wilson T. E., Cui J., Zhang R., Crandall C. G. (2006). Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291 R1443–R1448. 10.1152/ajpregu.00712.2005 PubMed DOI PMC

Wilson T. E., Tollund C., Yoshiga C. C., Dawson E. A., Nissen P., Secher N. H., et al. (2007). Effects of heat and cold stress on central vascular pressure relationships during orthostasis in humans. J. Physiol. 585(Pt 1), 279–285. 10.1113/jphysiol.2007.137901 PubMed DOI PMC

Yang H., Cooke W. H., Reed K. S., Carter J. R. (2012). Sex differences in hemodynamic and sympathetic neural firing patterns during orthostatic challenge in humans. J. Appl. Physiol. 112 1744–1751. 10.1152/japplphysiol.01407.2011 PubMed DOI

Youden W. J. (1950). Index for rating diagnostic tests. Cancer 3 32–35. 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...