Active particles bound by information flows

. 2018 Sep 21 ; 9 (1) : 3864. [epub] 20180921

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30242284
Odkazy

PubMed 30242284
PubMed Central PMC6154969
DOI 10.1038/s41467-018-06445-1
PII: 10.1038/s41467-018-06445-1
Knihovny.cz E-zdroje

Self-organization is the generation of order out of local interactions. It is deeply connected to many fields of science from physics, chemistry to biology, all based on physical interactions. The emergence of collective animal behavior is the result of self-organization processes as well, though they involve abstract interactions arising from sensory inputs, information processing, storage, and feedback. Resulting collective behaviors are found, for example, in crowds of people, flocks of birds, and swarms of bacteria. Here we introduce interactions between active microparticles which are based on the information about other particle positions. A real-time feedback of multiple active particle positions is the information source for the propulsion direction of these particles. The emerging structures require continuous information flows. They reveal frustrated geometries due to confinement to two dimensions and internal dynamical degrees of freedom that are reminiscent of physically bound systems, though they exist only as nonequilibrium structures.

Zobrazit více v PubMed

Bechinger C, et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016;88:045006. doi: 10.1103/RevModPhys.88.045006. DOI

Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. Living crystals of light-activated colloidal surfers. Science. 2013;339:936–940. doi: 10.1126/science.1230020. PubMed DOI

Buttinoni I, et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 2013;110:238301. doi: 10.1103/PhysRevLett.110.238301. PubMed DOI

Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y. Pressure is not a state function for generic active fluids. Nat. Phys. 2015;11:673–678. doi: 10.1038/nphys3377. DOI

Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 2012;108:268303. doi: 10.1103/PhysRevLett.108.268303. PubMed DOI

Fily Y, Marchetti MC. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 2012;108:235702. doi: 10.1103/PhysRevLett.108.235702. PubMed DOI

Pearce DJG, Miller AM, Rowlands G, Turner MS. Role of projection in the control of bird flocks. Proc. Natl Acad. Sci. USA. 2014;111:10422–10426. doi: 10.1073/pnas.1402202111. PubMed DOI PMC

Ballerini M, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA. 2008;105:1232–1237. doi: 10.1073/pnas.0711437105. PubMed DOI PMC

Attanasi A, et al. Information transfer and behavioral inertia in starling flocks. Nat. Phys. 2014;10:691–696. doi: 10.1038/nphys3035. PubMed DOI PMC

Miller MB, Bassler BL. Quorum sensing in bacteria. Ann. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI

Tkacik G, Callan CG, Bialek W. Information flow and optimization in transcriptional regulation. Proc. Natl Acad. Sci. USA. 2008;105:12265–12270. doi: 10.1073/pnas.0806077105. PubMed DOI PMC

Micali G, Endres RG. Bacterial chemotaxis: information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 2016;30:8–15. doi: 10.1016/j.mib.2015.12.001. PubMed DOI

Landauer R. The physical nature of information. Phys. Lett. A. 1996;217:188–193. doi: 10.1016/0375-9601(96)00453-7. DOI

Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl Acad. Sci. USA. 2011;108:18720–18725. doi: 10.1073/pnas.1107583108. PubMed DOI PMC

Swain DT, Couzin ID, Ehrich Leonard N. Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proc. IEEE. 2012;100:150–163. doi: 10.1109/JPROC.2011.2165449. DOI

Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID. Emergent sensing of complex environments by mobile animal groups. Science. 2013;339:574–576. doi: 10.1126/science.1225883. PubMed DOI

Kroy K, Chakraborty D, Cichos F. Hot microswimmers. Eur. Phys. J. Spec. Top. 2016;225:2207–2225. doi: 10.1140/epjst/e2016-60098-6. DOI

Selmke M, Khadka U, Bregulla AP, Cichos F, Yang H. Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport. Phys. Chem. Chem. Phys. 2018;20:10502–10520. doi: 10.1039/C7CP06559K. PubMed DOI

Selmke M, Khadka U, Bregulla AP, Cichos F, Yang H. Theory for controlling individual self-propelled micro-swimmers by photon nudging II: confinement. Phys. Chem. Chem. Phys. 2018;4:1–12. PubMed

Jiang HR, Yoshinaga N, Sano M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 2010;105:268302. doi: 10.1103/PhysRevLett.105.268302. PubMed DOI

Bregulla AP, Würger A, Günther K, Mertig M, Cichos F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016;116:188303. doi: 10.1103/PhysRevLett.116.188303. PubMed DOI

Bickel T, Majee A, Würger A. Flow pattern in the vicinity of self-propelling hot Janus particles. Phys. Rev. E. 2013;88:012301. doi: 10.1103/PhysRevE.88.012301. PubMed DOI

Bregulla AP, Yang H, Cichos F. Stochastic localization of microswimmers by photon nudging. ACS Nano. 2014;8:6542–6550. doi: 10.1021/nn501568e. PubMed DOI

Qian B, Montiel D, Bregulla A, Cichos F, Yang H. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 2013;4:1420–1429. doi: 10.1039/c2sc21263c. DOI

Jun Y, Bechhoefer J. Virtual potentials for feedback traps. Phys. Rev. E. 2012;86:061106. doi: 10.1103/PhysRevE.86.061106. PubMed DOI

Braun M, Bregulla AP, Günther K, Mertig M, Cichos F. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett. 2015;15:5499–5505. doi: 10.1021/acs.nanolett.5b01999. PubMed DOI

Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt. Commun. 2002;207:169–175. doi: 10.1016/S0030-4018(02)01524-9. DOI

Padgett M, Di Leonardo R. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip. 2011;11:1196–1205. doi: 10.1039/c0lc00526f. PubMed DOI

Cates ME, Tailleur J. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation. Eur. Phys. Lett. 2013;101:20010. doi: 10.1209/0295-5075/101/20010. DOI

Cates ME. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 2012;75:042601. doi: 10.1088/0034-4885/75/4/042601. PubMed DOI

Palmer, G. & Yaida, S. Optimizing collective fieldtaxis of swarming agents through reinforcement learning. Preprint at http://arXiv.org/abs/1709.02379 (2017).

Jolliffe I. T. Principal Component Analysis. New York, NY: Springer New York; 1986.

Smith, H. An introduction to delay differential equations with applications to the life sciences. (Springer, New York, 2011). Texts in Applied Mathematics..

Baraban L, Harazim SM, Sánchez S, Schmidt OG. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 2013;52:5552–5556. doi: 10.1002/anie.201301460. PubMed DOI PMC

Schnitzer MJ. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E. 1993;48:2553–2568. doi: 10.1103/PhysRevE.48.2553. PubMed DOI

Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L. Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 2010;105:088304. doi: 10.1103/PhysRevLett.105.088304. PubMed DOI

Bregulla AP, Cichos F. Size dependent efficiency of photophoretic swimmers. Faraday Discuss. 2015;184:381–391. doi: 10.1039/C5FD00111K. PubMed DOI

Fuchs J, Goldt S, Seifert U. Stochastic thermodynamics of resetting. Eur. Phys. Lett. 2016;113:60009. doi: 10.1209/0295-5075/113/60009. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spontaneous vortex formation by microswimmers with retarded attractions

. 2023 Jan 04 ; 14 (1) : 56. [epub] 20230104

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...