Active particles bound by information flows
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30242284
PubMed Central
PMC6154969
DOI
10.1038/s41467-018-06445-1
PII: 10.1038/s41467-018-06445-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Self-organization is the generation of order out of local interactions. It is deeply connected to many fields of science from physics, chemistry to biology, all based on physical interactions. The emergence of collective animal behavior is the result of self-organization processes as well, though they involve abstract interactions arising from sensory inputs, information processing, storage, and feedback. Resulting collective behaviors are found, for example, in crowds of people, flocks of birds, and swarms of bacteria. Here we introduce interactions between active microparticles which are based on the information about other particle positions. A real-time feedback of multiple active particle positions is the information source for the propulsion direction of these particles. The emerging structures require continuous information flows. They reveal frustrated geometries due to confinement to two dimensions and internal dynamical degrees of freedom that are reminiscent of physically bound systems, though they exist only as nonequilibrium structures.
Department of Chemistry Princeton University Princeton NJ 08544 USA
Institute for Theoretical Physics Universität Leipzig 04103 Leipzig Germany
Peter Debye Institute for Soft Matter Physics Universität Leipzig 04103 Leipzig Germany
Zobrazit více v PubMed
Bechinger C, et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016;88:045006. doi: 10.1103/RevModPhys.88.045006. DOI
Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. Living crystals of light-activated colloidal surfers. Science. 2013;339:936–940. doi: 10.1126/science.1230020. PubMed DOI
Buttinoni I, et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 2013;110:238301. doi: 10.1103/PhysRevLett.110.238301. PubMed DOI
Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y. Pressure is not a state function for generic active fluids. Nat. Phys. 2015;11:673–678. doi: 10.1038/nphys3377. DOI
Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 2012;108:268303. doi: 10.1103/PhysRevLett.108.268303. PubMed DOI
Fily Y, Marchetti MC. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 2012;108:235702. doi: 10.1103/PhysRevLett.108.235702. PubMed DOI
Pearce DJG, Miller AM, Rowlands G, Turner MS. Role of projection in the control of bird flocks. Proc. Natl Acad. Sci. USA. 2014;111:10422–10426. doi: 10.1073/pnas.1402202111. PubMed DOI PMC
Ballerini M, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA. 2008;105:1232–1237. doi: 10.1073/pnas.0711437105. PubMed DOI PMC
Attanasi A, et al. Information transfer and behavioral inertia in starling flocks. Nat. Phys. 2014;10:691–696. doi: 10.1038/nphys3035. PubMed DOI PMC
Miller MB, Bassler BL. Quorum sensing in bacteria. Ann. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI
Tkacik G, Callan CG, Bialek W. Information flow and optimization in transcriptional regulation. Proc. Natl Acad. Sci. USA. 2008;105:12265–12270. doi: 10.1073/pnas.0806077105. PubMed DOI PMC
Micali G, Endres RG. Bacterial chemotaxis: information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 2016;30:8–15. doi: 10.1016/j.mib.2015.12.001. PubMed DOI
Landauer R. The physical nature of information. Phys. Lett. A. 1996;217:188–193. doi: 10.1016/0375-9601(96)00453-7. DOI
Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl Acad. Sci. USA. 2011;108:18720–18725. doi: 10.1073/pnas.1107583108. PubMed DOI PMC
Swain DT, Couzin ID, Ehrich Leonard N. Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proc. IEEE. 2012;100:150–163. doi: 10.1109/JPROC.2011.2165449. DOI
Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID. Emergent sensing of complex environments by mobile animal groups. Science. 2013;339:574–576. doi: 10.1126/science.1225883. PubMed DOI
Kroy K, Chakraborty D, Cichos F. Hot microswimmers. Eur. Phys. J. Spec. Top. 2016;225:2207–2225. doi: 10.1140/epjst/e2016-60098-6. DOI
Selmke M, Khadka U, Bregulla AP, Cichos F, Yang H. Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport. Phys. Chem. Chem. Phys. 2018;20:10502–10520. doi: 10.1039/C7CP06559K. PubMed DOI
Selmke M, Khadka U, Bregulla AP, Cichos F, Yang H. Theory for controlling individual self-propelled micro-swimmers by photon nudging II: confinement. Phys. Chem. Chem. Phys. 2018;4:1–12. PubMed
Jiang HR, Yoshinaga N, Sano M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 2010;105:268302. doi: 10.1103/PhysRevLett.105.268302. PubMed DOI
Bregulla AP, Würger A, Günther K, Mertig M, Cichos F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016;116:188303. doi: 10.1103/PhysRevLett.116.188303. PubMed DOI
Bickel T, Majee A, Würger A. Flow pattern in the vicinity of self-propelling hot Janus particles. Phys. Rev. E. 2013;88:012301. doi: 10.1103/PhysRevE.88.012301. PubMed DOI
Bregulla AP, Yang H, Cichos F. Stochastic localization of microswimmers by photon nudging. ACS Nano. 2014;8:6542–6550. doi: 10.1021/nn501568e. PubMed DOI
Qian B, Montiel D, Bregulla A, Cichos F, Yang H. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 2013;4:1420–1429. doi: 10.1039/c2sc21263c. DOI
Jun Y, Bechhoefer J. Virtual potentials for feedback traps. Phys. Rev. E. 2012;86:061106. doi: 10.1103/PhysRevE.86.061106. PubMed DOI
Braun M, Bregulla AP, Günther K, Mertig M, Cichos F. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett. 2015;15:5499–5505. doi: 10.1021/acs.nanolett.5b01999. PubMed DOI
Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt. Commun. 2002;207:169–175. doi: 10.1016/S0030-4018(02)01524-9. DOI
Padgett M, Di Leonardo R. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip. 2011;11:1196–1205. doi: 10.1039/c0lc00526f. PubMed DOI
Cates ME, Tailleur J. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation. Eur. Phys. Lett. 2013;101:20010. doi: 10.1209/0295-5075/101/20010. DOI
Cates ME. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 2012;75:042601. doi: 10.1088/0034-4885/75/4/042601. PubMed DOI
Palmer, G. & Yaida, S. Optimizing collective fieldtaxis of swarming agents through reinforcement learning. Preprint at http://arXiv.org/abs/1709.02379 (2017).
Jolliffe I. T. Principal Component Analysis. New York, NY: Springer New York; 1986.
Smith, H. An introduction to delay differential equations with applications to the life sciences. (Springer, New York, 2011). Texts in Applied Mathematics..
Baraban L, Harazim SM, Sánchez S, Schmidt OG. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 2013;52:5552–5556. doi: 10.1002/anie.201301460. PubMed DOI PMC
Schnitzer MJ. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E. 1993;48:2553–2568. doi: 10.1103/PhysRevE.48.2553. PubMed DOI
Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L. Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 2010;105:088304. doi: 10.1103/PhysRevLett.105.088304. PubMed DOI
Bregulla AP, Cichos F. Size dependent efficiency of photophoretic swimmers. Faraday Discuss. 2015;184:381–391. doi: 10.1039/C5FD00111K. PubMed DOI
Fuchs J, Goldt S, Seifert U. Stochastic thermodynamics of resetting. Eur. Phys. Lett. 2016;113:60009. doi: 10.1209/0295-5075/113/60009. DOI