A novel PSMA/GCPII-deficient mouse model shows enlarged seminal vesicles upon aging
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30256431
DOI
10.1002/pros.23717
Knihovny.cz E-resources
- Keywords
- Folh1, dilated seminal vesicles, glutamate carboxypeptidase II, knockout mice, prostate-specific membrane antigen,
- MeSH
- Antigens, Surface genetics metabolism MeSH
- Glutamate Carboxypeptidase II deficiency genetics metabolism MeSH
- Immunohistochemistry MeSH
- Humans MeSH
- Membrane Glycoproteins deficiency genetics metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Seminal Vesicles enzymology pathology MeSH
- Aging metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Surface MeSH
- FOLH1 protein, human MeSH Browser
- Glutamate Carboxypeptidase II MeSH
- Membrane Glycoproteins MeSH
- PSMA protein, mouse MeSH Browser
BACKGROUND: Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is an important diagnostic and therapeutic target in prostate cancer. PSMA/GCPII is also expressed in many healthy tissues, but its function has only been established in the brain and small intestine. Several research groups have attempted to produce PSMA/GCPII-deficient mice to study the physiological role of PSMA/GCPII in detail. The outcomes of these studies differ dramatically, ranging from embryonic lethality to production of viable PSMA/GCPII-deficient mice without any obvious phenotype. METHODS: We produced PSMA/GCPII-deficient mice (hereafter also referred as Folh1-/- mice) by TALEN-mediated mutagenesis on a C57BL/6NCrl background. Using Western blot and an enzyme activity assay, we confirmed the absence of PSMA/GCPII in our Folh1-/- mice. We performed anatomical and histopathological examination of selected tissues with a focus on urogenital system. We also examined the PSMA/GCPII expression profile within the mouse urogenital system using an enzyme activity assay and confirmed the presence of PSMA/GCPII in selected tissues by immunohistochemistry. RESULTS: Our Folh1-/- mice are viable, breed normally, and do not show any obvious phenotype. Nevertheless, aged Folh1-/- mice of 69-72 weeks exhibit seminal vesicle dilation, which is caused by accumulation of luminal fluid. This phenotype was also observed in Folh1+/- mice; the overall difference between our three cohorts (Folh1-/- , Folh1+/- , and Folh1+/+ ) was highly significant (P < 0.002). Of all studied tissues of the mouse urogenital system, only the epididymis appeared to have a physiologically relevant level of PSMA/GCPII expression. Additional experiments demonstrated that PSMA/GCPII is also present in the human epididymis. CONCLUSIONS: In this study, we provide the first evidence characterizing the reproductive tissue phenotype of PSMA/GCPII-deficient mice. These findings will help lay the groundwork for future studies to reveal PSMA/GCPII function in human reproduction.
1st Faculty of Medicine Charles University Prague 2 Czech Republic
Department of Biochemistry Faculty of Science Charles University Prague 2 Czech Republic
National Institute of Public Health Prague 10 Czech Republic
References provided by Crossref.org