Parallel Metabolomics and Lipidomics of a PSMA/GCPII Deficient Mouse Model Reveal Alteration of NAAG Levels and Brain Lipid Composition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38377674
PubMed Central
PMC10995945
DOI
10.1021/acschemneuro.3c00494
Knihovny.cz E-zdroje
- Klíčová slova
- FOLH1, N-acetyl-aspartyl-glutamate, folyl-poly-γ-glutamyl hydrolase I, glutamate carboxypeptidase II, lipidomics, metabolomics,
- MeSH
- dipeptidy metabolismus MeSH
- glutamátkarboxypeptidasa II * genetika metabolismus MeSH
- kyselina glutamová MeSH
- lipidomika * MeSH
- lipidy chemie MeSH
- metabolomika * MeSH
- mozek metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dipeptidy MeSH
- Folh1 protein, mouse MeSH Prohlížeč
- glutamátkarboxypeptidasa II * MeSH
- isospaglumic acid MeSH Prohlížeč
- kyselina glutamová MeSH
- lipidy MeSH
Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
Department of Biochemistry Faculty of Science Charles University Hlavova 8 Prague 128 00 Czechia
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague 6 166 10 Czechia
Zobrazit více v PubMed
Robinson M. B.; Blakely R. D.; Couto R.; Coyle J. T. Hydrolysis of the Brain Dipeptide N-Acetyl-L-Aspartyl-L-Glutamate. Identification and Characterization of a Novel N-Acetylated Alpha-Linked Acidic Dipeptidase Activity from Rat Brain. J. Biol. Chem. 1987, 262 (30), 14498–14506. 10.1016/S0021-9258(18)47823-4. PubMed DOI
Halsted C. H.; Ling E. H.; Luthi-Carter R.; Villanueva J. A.; Gardner J. M.; Coyle J. T. Folylpoly-Gamma-Glutamate Carboxypeptidase from Pig Jejunum. Molecular Characterization and Relation to Glutamate Carboxypeptidase II. J. Biol. Chem. 1998, 273 (32), 20417–20424. 10.1074/jbc.273.32.20417. PubMed DOI
Pangalos M. N.; Neefs J. M.; Somers M.; Verhasselt P.; Bekkers M.; van der Helm L.; Fraiponts E.; Ashton D.; Gordon R. D. Isolation and Expression of Novel Human Glutamate Carboxypeptidases with N-Acetylated Alpha-Linked Acidic Dipeptidase and Dipeptidyl Peptidase IV Activity. J. Biol. Chem. 1999, 274 (13), 8470–8483. 10.1074/jbc.274.13.8470. PubMed DOI
Collard F.; Vertommen D.; Constantinescu S.; Buts L.; Van Schaftingen E. Molecular Identification of β-Citrylglutamate Hydrolase as Glutamate Carboxypeptidase 3. J. Biol. Chem. 2011, 286 (44), 38220–38230. 10.1074/jbc.M111.287318. PubMed DOI PMC
Navrátil M.; Tykvart J.; Schimer J.; Pachl P.; Navrátil V.; Rokob T. A.; Hlouchová K.; Rulíšek L.; Konvalinka J. Comparison of Human Glutamate Carboxypeptidases II and III Reveals Their Divergent Substrate Specificities. FEBS J. 2016, 283 (13), 2528–2545. 10.1111/febs.13761. PubMed DOI
Wroblewska B.; Santi M. R.; Neale J. H. N-Acetylaspartylglutamate Activates Cyclic AMP-Coupled Metabotropic Glutamate Receptors in Cerebellar Astrocytes. Glia 1998, 24 (2), 172–179. 10.1002/(SICI)1098-1136(199810)24:2<172::AID-GLIA2>3.0.CO;2-6. PubMed DOI
Wroblewska B. NAAG as a Neurotransmitter. Adv. Exp. Med. Biol. 2006, 576, 317–325. 10.1007/0-387-30172-0_23. PubMed DOI
Romei C.; Raiteri M.; Raiteri L. Glycine Release Is Regulated by Metabotropic Glutamate Receptors Sensitive to mGluR2/3 Ligands and Activated by N-Acetylaspartylglutamate (NAAG). Neuropharmacology 2013, 66, 311–316. 10.1016/j.neuropharm.2012.05.030. PubMed DOI
Ghose S.; Wroblewska B.; Corsi L.; Grayson D. R.; De Blas A. L.; Vicini S.; Neale J. H. N-Acetylaspartylglutamate Stimulates Metabotropic Glutamate Receptor 3 to Regulate Expression of the GABA(A) alpha6 Subunit in Cerebellar Granule Cells. J. Neurochem. 1997, 69 (6), 2326–2335. 10.1046/j.1471-4159.1997.69062326.x. PubMed DOI
Thomas A. G.; Liu W.; Olkowski J. L.; Tang Z.; Lin Q.; Lu X. C.; Slusher B. S. Neuroprotection Mediated by Glutamate Carboxypeptidase II (NAALADase) Inhibition Requires TGF-Beta. Eur. J. Pharmacol. 2001, 430 (1), 33–40. 10.1016/S0014-2999(01)01239-0. PubMed DOI
Vornov J. J.; Wozniak K.; Lu M.; Jackson P.; Tsukamoto T.; Wang E.; Slusher B. Blockade of NAALADase: A Novel Neuroprotective Strategy Based on Limiting Glutamate and Elevating NAAG. Ann. N.Y. Acad. Sci. 1999, 890, 400–405. 10.1111/j.1749-6632.1999.tb08019.x. PubMed DOI
Williams A. J.; Lu X. M.; Slusher B.; Tortella F. C. Electroencephalogram Analysis and Neuroprotective Profile of the N-Acetylated-Alpha-Linked Acidic Dipeptidase Inhibitor, GPI5232, in Normal and Brain-Injured Rats. J. Pharmacol. Exp. Ther. 2001, 299 (1), 48–57. PubMed
Cai Z.; Lin S.; Rhodes P. G. Neuroprotective Effects of N-Acetylaspartylglutamate in a Neonatal Rat Model of Hypoxia-Ischemia. Eur. J. Pharmacol. 2002, 437 (3), 139–145. 10.1016/S0014-2999(02)01289-X. PubMed DOI
Zhong C.; Zhao X.; Sarva J.; Kozikowski A.; Neale J. H.; Lyeth B. G. NAAG Peptidase Inhibitor Reduces Acute Neuronal Degeneration and Astrocyte Damage Following Lateral Fluid Percussion TBI in Rats. J. Neurotrauma 2005, 22 (2), 266–276. 10.1089/neu.2005.22.266. PubMed DOI
Ghadge G. D.; Slusher B. S.; Bodner A.; Canto M. D.; Wozniak K.; Thomas A. G.; Rojas C.; Tsukamoto T.; Majer P.; Miller R. J.; Monti A. L.; Roos R. P. Glutamate Carboxypeptidase II Inhibition Protects Motor Neurons from Death in Familial Amyotrophic Lateral Sclerosis Models. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (16), 9554–9559. 10.1073/pnas.1530168100. PubMed DOI PMC
Yamamoto T.; Kozikowski A.; Zhou J.; Neale J. H. Intracerebroventricular Administration of N-Acetylaspartylglutamate (NAAG) Peptidase Inhibitors Is Analgesic in Inflammatory Pain. Mol. Pain 2008, 4, 31.10.1186/1744-8069-4-31. PubMed DOI PMC
Yamamoto T.; Saito O.; Aoe T.; Bartolozzi A.; Sarva J.; Zhou J.; Kozikowski A.; Wroblewska B.; Bzdega T.; Neale J. H. Local Administration of N-Acetylaspartylglutamate (NAAG) Peptidase Inhibitors Is Analgesic in Peripheral Pain in Rats. Eur. J. Neurosci. 2007, 25 (1), 147–158. 10.1111/j.1460-9568.2006.05272.x. PubMed DOI
Zhang W.; Murakawa Y.; Wozniak K. M.; Slusher B.; Sima A. A. F. The Preventive and Therapeutic Effects of GCPII (NAALADase) Inhibition on Painful and Sensory Diabetic Neuropathy. J. Neurol. Sci. 2006, 247 (2), 217–223. 10.1016/j.jns.2006.05.052. PubMed DOI
Wozniak K. M.; Wu Y.; Vornov J. J.; Lapidus R.; Rais R.; Rojas C.; Tsukamoto T.; Slusher B. S. The Orally Active Glutamate Carboxypeptidase II Inhibitor E2072 Exhibits Sustained Nerve Exposure and Attenuates Peripheral Neuropathy. J. Pharmacol. Exp. Ther. 2012, 343 (3), 746–754. 10.1124/jpet.112.197665. PubMed DOI
Olszewski R. T.; Bukhari N.; Zhou J.; Kozikowski A. P.; Wroblewski J. T.; Shamimi-Noori S.; Wroblewska B.; Bzdega T.; Vicini S.; Barton F. B.; Neale J. H. NAAG Peptidase Inhibition Reduces Locomotor Activity and Some Stereotypes in the PCP Model of Schizophrenia via Group II mGluR. J. Neurochem. 2004, 89 (4), 876–885. 10.1111/j.1471-4159.2004.02358.x. PubMed DOI
Profaci C. P.; Krolikowski K. A.; Olszewski R. T.; Neale J. H. Group II mGluR Agonist LY354740 and NAAG Peptidase Inhibitor Effects on Prepulse Inhibition in PCP and D-Amphetamine Models of Schizophrenia. Psychopharmacology 2011, 216 (2), 235–243. 10.1007/s00213-011-2200-0. PubMed DOI PMC
Tsai G.; Dunham K. S.; Drager U.; Grier A.; Anderson C.; Collura J.; Coyle J. T. Early Embryonic Death of Glutamate Carboxypeptidase II (NAALADase) Homozygous Mutants. Synapse 2003, 50 (4), 285–292. 10.1002/syn.10263. PubMed DOI
Han L.; Picker J. D.; Schaevitz L. R.; Tsai G.; Feng J.; Jiang Z.; Chu H. C.; Basu A. C.; Berger-Sweeney J.; Coyle J. T. Phenotypic Characterization of Mice Heterozygous for a Null Mutation of Glutamate Carboxypeptidase II. Synapse 2009, 63 (8), 625–635. 10.1002/syn.20649. PubMed DOI PMC
Vorlová B.; Sedlák F.; Kašpárek P.; Šrámková K.; Malý M.; Zámečník J.; Šácha P.; Konvalinka J. A Novel PSMA/GCPII-Deficient Mouse Model Shows Enlarged Seminal Vesicles upon Aging. Prostate 2019, 79 (2), 126–139. 10.1002/pros.23717. PubMed DOI
Bacich D. J.; Ramadan E.; O’Keefe D. S.; Bukhari N.; Wegorzewska I.; Ojeifo O.; Olszewski R.; Wrenn C. C.; Bzdega T.; Wroblewska B.; Heston W. D. W.; Neale J. H. Deletion of the Glutamate Carboxypeptidase II Gene in Mice Reveals a Second Enzyme Activity That Hydrolyzes N-Acetylaspartylglutamate. J. Neurochem. 2002, 83 (1), 20–29. 10.1046/j.1471-4159.2002.01117.x. PubMed DOI
Gao Y.; Xu S.; Cui Z.; Zhang M.; Lin Y.; Cai L.; Wang Z.; Luo X.; Zheng Y.; Wang Y.; Luo Q.; Jiang J.; Neale J. H.; Zhong C. Mice Lacking Glutamate Carboxypeptidase II Develop Normally, but Are Less Susceptible to Traumatic Brain Injury. J. Neurochem. 2015, 134 (2), 340–353. 10.1111/jnc.13123. PubMed DOI
Bacich D. J.; Wozniak K. M.; Lu X.-C. M.; O’Keefe D. S.; Callizot N.; Heston W. D. W.; Slusher B. S. Mice Lacking Glutamate Carboxypeptidase II Are Protected from Peripheral Neuropathy and Ischemic Brain Injury. J. Neurochem. 2005, 95 (2), 314–323. 10.1111/j.1471-4159.2005.03361.x. PubMed DOI
Wolf N. I.; Willemsen M. A. A. P.; Engelke U. F.; van der Knaap M. S.; Pouwels P. J. W.; Harting I.; Zschocke J.; Sistermans E. A.; Rating D.; Wevers R. A. Severe Hypomyelination Associated with Increased Levels of N-Acetylaspartylglutamate in CSF. Neurology 2004, 62 (9), 1503–1508. 10.1212/01.WNL.0000123094.13406.20. PubMed DOI
Sartori S.; Burlina A. B.; Salviati L.; Trevisson E.; Toldo I.; Laverda A. M.; Burlina A. P. Increased Level of N-Acetylaspartylglutamate (NAAG) in the CSF of a Patient with Pelizaeus-Merzbacher-like Disease due to Mutation in the GJA12 Gene. Eur. J. Paediatr. Neurol. 2008, 12 (4), 348–350. 10.1016/j.ejpn.2007.07.011. PubMed DOI
Mochel F.; Boildieu N.; Barritault J.; Sarret C.; Eymard-Pierre E.; Seguin F.; Schiffmann R.; Boespflug-Tanguy O. Elevated CSF N-Acetylaspartylglutamate Suggests Specific Molecular Diagnostic Abnormalities in Patients with White Matter Diseases. Biochim. Biophys. Acta 2010, 1802 (11), 1112–1117. 10.1016/j.bbadis.2010.07.005. PubMed DOI PMC
Francis J. S.; Wojtas I.; Markov V.; Gray S. J.; McCown T. J.; Samulski R. J.; Bilaniuk L. T.; Wang D.-J.; De Vivo D. C.; Janson C. G.; Leone P. N-Acetylaspartate Supports the Energetic Demands of Developmental Myelination via Oligodendroglial Aspartoacylase. Neurobiol. Dis. 2016, 96, 323–334. 10.1016/j.nbd.2016.10.001. PubMed DOI PMC
Burri R.; Steffen C.; Herschkowitz N. N-Acetyl-L-Aspartate Is a Major Source of Acetyl Groups for Lipid Synthesis during Rat Brain Development. Dev. Neurosci. 1991, 13 (6), 403–411. 10.1159/000112191. PubMed DOI
Singhal N. K.; Huang H.; Li S.; Clements R.; Gadd J.; Daniels A.; Kooijman E. E.; Bannerman P.; Burns T.; Guo F.; Pleasure D.; Freeman E.; Shriver L.; McDonough J. The Neuronal Metabolite NAA Regulates Histone H3Methylation in Oligodendrocytes and Myelin Lipid Composition. Exp. Brain Res. 2017, 235 (1), 279–292. 10.1007/s00221-016-4789-z. PubMed DOI PMC
Salji M. J.; Blomme A.; Däbritz J. H. M.; Repiscak P.; Lilla S.; Patel R.; Sumpton D.; van den Broek N. J. F.; Daly R.; Zanivan S.; Leung H. Y. Multi-Omics & Pathway Analysis Identify Potential Roles for Tumor N-Acetyl Aspartate Accumulation in Murine Models of Castration-Resistant Prostate Cancer. iScience 2022, 25 (4), 10405610.1016/j.isci.2022.104056. PubMed DOI PMC
Jones S. R.; Carley S.; Harrison M. An Introduction to Power and Sample Size Estimation. Emerg. Med. J. 2003, 20 (5), 453–458. 10.1136/emj.20.5.453. PubMed DOI PMC
Rodriguez-Navas C.; Morselli E.; Clegg D. J. Sexually Dimorphic Brain Fatty Acid Composition in Low and High Fat Diet-Fed Mice. Mol. Metab 2016, 5 (8), 680–689. 10.1016/j.molmet.2016.06.014. PubMed DOI PMC
Horoszewicz J. S.; Kawinski E.; Murphy G. P. Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and Serum of Prostatic Cancer Patients. Anticancer Res. 1987, 7 (5B), 927–935. PubMed
Vorlova B.; Knedlik T.; Tykvart J.; Konvalinka J. GCPII and Its Close Homolog GCPIII: From a Neuropeptidase to a Cancer Marker and beyond. Front. Biosci. 2019, 24, 648–687. 10.2741/4742. PubMed DOI
Evans J. C.; Malhotra M.; Cryan J. F.; O’Driscoll C. M. The Therapeutic and Diagnostic Potential of the Prostate Specific Membrane Antigen/glutamate Carboxypeptidase II (PSMA/GCPII) in Cancer and Neurological Disease. Br. J. Pharmacol. 2016, 173 (21), 3041–3079. 10.1111/bph.13576. PubMed DOI PMC
Olsen A. S. B.; Færgeman N. J. Sphingolipids: Membrane Microdomains in Brain Development, Function and Neurological Diseases. Open Biol. 2017, 7 (5), 17006910.1098/rsob.170069. PubMed DOI PMC
Poitelon Y.; Kopec A. M.; Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9 (4), 812.10.3390/cells9040812. PubMed DOI PMC
Aggarwal S.; Yurlova L.; Simons M. Central Nervous System Myelin: Structure, Synthesis and Assembly. Trends Cell Biol. 2011, 21 (10), 585–593. 10.1016/j.tcb.2011.06.004. PubMed DOI
Guan Z.; Wang Y.; Cairns N. J.; Lantos P. L.; Dallner G.; Sindelar P. J. Decrease and Structural Modifications of Phosphatidylethanolamine Plasmalogen in the Brain with Alzheimer Disease. J. Neuropathol. Exp. Neurol. 1999, 58 (7), 740–747. 10.1097/00005072-199907000-00008. PubMed DOI
Su X. Q.; Wang J.; Sinclair A. J. Plasmalogens and Alzheimer’s Disease: A Review. Lipids Health Dis. 2019, 18 (1), 100.10.1186/s12944-019-1044-1. PubMed DOI PMC
Fabelo N.; Martín V.; Santpere G.; Marín R.; Torrent L.; Ferrer I.; Díaz M. Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease. Mol. Med. 2011, 17 (9–10), 1107–1118. 10.2119/molmed.2011.00119. PubMed DOI PMC
Dorninger F.; Forss-Petter S.; Berger J. From Peroxisomal Disorders to Common Neurodegenerative Diseases - the Role of Ether Phospholipids in the Nervous System. FEBS Lett. 2017, 591 (18), 2761–2788. 10.1002/1873-3468.12788. PubMed DOI PMC
Katafuchi T.; Ifuku M.; Mawatari S.; Noda M.; Miake K.; Sugiyama M.; Fujino T. Effects of Plasmalogens on Systemic Lipopolysaccharide-Induced Glial Activation and β-Amyloid Accumulation in Adult Mice. Ann. N.Y. Acad. Sci. 2012, 1262, 85–92. 10.1111/j.1749-6632.2012.06641.x. PubMed DOI
Wallner S.; Schmitz G. Plasmalogens the Neglected Regulatory and Scavenging Lipid Species. Chem. Phys. Lipids 2011, 164 (6), 573–589. 10.1016/j.chemphyslip.2011.06.008. PubMed DOI
Luoma A. M.; Kuo F.; Cakici O.; Crowther M. N.; Denninger A. R.; Avila R. L.; Brites P.; Kirschner D. A. Plasmalogen Phospholipids Protect Internodal Myelin from Oxidative Damage. Free Radic. Biol. Med. 2015, 84, 296–310. 10.1016/j.freeradbiomed.2015.03.012. PubMed DOI
Kinoshita K.; Arai K.; Kawaura K.; Hiyoshi T.; Yamaguchi J.-I. Development, Validation, and Application of a Surrogate Analyte Method for Determining N-Acetyl-L-Aspartyl-L-Glutamic Acid Levels in Rat Brain, Plasma, and Cerebrospinal Fluid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1003, 1–11. 10.1016/j.jchromb.2015.09.005. PubMed DOI
Williamson L. C.; Neale J. H. Ultrastructural Localization of N-Acetylaspartylglutamate in Synaptic Vesicles of Retinal Neurons. Brain Res. 1988, 456 (2), 375–381. 10.1016/0006-8993(88)90243-0. PubMed DOI
Renno W. M.; Lee J. H.; Beitz A. J. Light and Electron Microscopic Immunohistochemical Localization of N-Acetylaspartylglutamate (NAAG) in the Olivocerebellar Pathway of the Rat. Synapse 1997, 26 (2), 140–154. 10.1002/(SICI)1098-2396(199706)26:2<140::AID-SYN5>3.0.CO;2-8. PubMed DOI
Sácha P.; Zámecník J.; Barinka C.; Hlouchová K.; Vícha A.; Mlcochová P.; Hilgert I.; Eckschlager T.; Konvalinka J. Expression of Glutamate Carboxypeptidase II in Human Brain. Neuroscience 2007, 144 (4), 1361–1372. 10.1016/j.neuroscience.2006.10.022. PubMed DOI
Nagel J.; Belozertseva I.; Greco S.; Kashkin V.; Malyshkin A.; Jirgensons A.; Shekunova E.; Eilbacher B.; Bespalov A.; Danysz W. Effects of NAAG Peptidase Inhibitor 2-PMPA in Model Chronic Pain - Relation to Brain Concentration. Neuropharmacology 2006, 51 (7–8), 1163–1171. 10.1016/j.neuropharm.2006.07.018. PubMed DOI
Lin S. N.; Slopis J. M.; Butler I. J.; Caprioli R. M. In Vivo Microdialysis and Gas Chromatography/mass Spectrometry for Studies on Release of N-Acetylaspartlyglutamate and N-Acetylaspartate in Rat Brain Hypothalamus. J. Neurosci. Methods 1995, 62 (1–2), 199–205. 10.1016/0165-0270(95)00077-1. PubMed DOI
Sager T. N.; Laursen H.; Hansen A. J. Changes in N-Acetyl-Aspartate Content during Focal and Global Brain Ischemia of the Rat. J. Cereb. Blood Flow Metab. 1995, 15 (4), 639–646. 10.1038/jcbfm.1995.79. PubMed DOI
Masaharu M.; Hideo M.; Mutsuhiko M.; Yasuo K. N-Acetyl-L-Aspartic Acid, Acid and β-Citryl-L-Glutamic Acid in Human Urine. Clin. Chim. Acta 1982, 120 (1), 119–126. 10.1016/0009-8981(82)90082-1. PubMed DOI
Chigurupati S.; Son T. G.; Hyun D.-H.; Lathia J. D.; Mughal M. R.; Savell J.; Li S. C.; Nagaraju G. P. C.; Chan S. L.; Arumugam T. V.; Mattson M. P. Lifelong Running Reduces Oxidative Stress and Degenerative Changes in the Testes of Mice. J. Endocrinol. 2008, 199 (2), 333–341. 10.1677/JOE-08-0306. PubMed DOI PMC
Liu L.; Duff K. A Technique for Serial Collection of Cerebrospinal Fluid from the Cisterna Magna in Mouse. J. Visualized Exp. 2008, 21, 960.10.3791/960-v. PubMed DOI PMC
Karlíková R.; Široká J.; Friedecký D.; Faber E.; Hrdá M.; Mičová K.; Fikarová I.; Gardlo A.; Janečková H.; Vrobel I.; Adam T. Metabolite Profiling of the Plasma and Leukocytes of Chronic Myeloid Leukemia Patients. J. Proteome Res. 2016, 15 (9), 3158–3166. 10.1021/acs.jproteome.6b00356. PubMed DOI
Xuan Q.; Hu C.; Yu D.; Wang L.; Zhou Y.; Zhao X.; Li Q.; Hou X.; Xu G. Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2018, 90 (12), 7608–7616. 10.1021/acs.analchem.8b01331. PubMed DOI PMC
Peng B.; Kopczynski D.; Pratt B. S.; Ejsing C. S.; Burla B.; Hermansson M.; Benke P. I.; Tan S. H.; Chan M. Y.; Torta F.; Schwudke D.; Meckelmann S. W.; Coman C.; Schmitz O. J.; MacLean B.; Manke M.-C.; Borst O.; Wenk M. R.; Hoffmann N.; Ahrends R. LipidCreator Workbench to Probe the Lipidomic Landscape. Nat. Commun. 2020, 11 (1), 2057.10.1038/s41467-020-15960-z. PubMed DOI PMC
Drotleff B.; Roth S. R.; Henkel K.; Calderón C.; Schlotterbeck J.; Neukamm M. A.; Lämmerhofer M. Lipidomic Profiling of Non-Mineralized Dental Plaque and Biofilm by Untargeted UHPLC-QTOF-MS/MS and SWATH Acquisition. Anal. Bioanal. Chem. 2020, 412 (10), 2303–2314. 10.1007/s00216-019-02364-2. PubMed DOI PMC
AlzbetaG . AlzbetaG/Metabol: First Version; Zenodo, 2019, DOI: 10.5281/ZENODO.3235775. DOI
Dieterle F.; Ross A.; Schlotterbeck G.; Senn H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78 (13), 4281–4290. 10.1021/ac051632c. PubMed DOI
Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13 (11), 2498–2504. 10.1101/gr.1239303. PubMed DOI PMC
Mitchell M. W. A Comparison of Aggregate P-Value Methods and Multivariate Statistics for Self-Contained Tests of Metabolic Pathway Analysis. PLoS One 2015, 10 (4), e012508110.1371/journal.pone.0125081. PubMed DOI PMC