Screening a large pediatric cohort with GH deficiency for mutations in genes regulating pituitary development and GH secretion: Frequencies, phenotypes and growth outcomes
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie
Grantová podpora
RC2 HL102923
NHLBI NIH HHS - United States
UC2 HL102926
NHLBI NIH HHS - United States
UC2 HL103010
NHLBI NIH HHS - United States
RC2 HL102926
NHLBI NIH HHS - United States
RC2 HL102924
NHLBI NIH HHS - United States
UC2 HL102923
NHLBI NIH HHS - United States
UC2 HL102924
NHLBI NIH HHS - United States
RC2 HL103010
NHLBI NIH HHS - United States
RC2 HL102925
NHLBI NIH HHS - United States
UC2 HL102925
NHLBI NIH HHS - United States
PubMed
30266296
PubMed Central
PMC6197701
DOI
10.1016/j.ebiom.2018.09.026
PII: S2352-3964(18)30384-0
Knihovny.cz E-zdroje
- Klíčová slova
- Genetics, Growth hormone deficiency, Hypopituitarism, Pituitary, Short stature,
- MeSH
- dítě MeSH
- fenotyp MeSH
- homeodoménové proteiny genetika MeSH
- hypofýza růst a vývoj metabolismus MeSH
- hypofyzární nanismus genetika metabolismus patofyziologie MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- lidský růstový hormon genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- protein Gli2 s motivem zinkových prstů genetika MeSH
- proteiny s homeodoménou LIM genetika MeSH
- receptory hormonů regulujících hypofyzární hormony MeSH
- receptory neuropeptidů MeSH
- transkripční faktor Pit-1 genetika MeSH
- transkripční faktory SOXB1 genetika MeSH
- transkripční faktory genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- Názvy látek
- GHRHR protein, human MeSH Prohlížeč
- GLI2 protein, human MeSH Prohlížeč
- HESX1 protein, human MeSH Prohlížeč
- homeodoménové proteiny MeSH
- jaderné proteiny MeSH
- Lhx3 protein MeSH Prohlížeč
- LHX4 protein, human MeSH Prohlížeč
- lidský růstový hormon MeSH
- POU1F1 protein, human MeSH Prohlížeč
- Prophet of Pit-1 protein MeSH Prohlížeč
- protein Gli2 s motivem zinkových prstů MeSH
- proteiny s homeodoménou LIM MeSH
- receptory hormonů regulujících hypofyzární hormony MeSH
- receptory neuropeptidů MeSH
- SOX3 protein, human MeSH Prohlížeč
- transkripční faktor Pit-1 MeSH
- transkripční faktory SOXB1 MeSH
- transkripční faktory MeSH
BACKGROUND: Pituitary development and GH secretion are orchestrated by multiple genes including GH1, GHRHR, GLI2, HESX1, LHX3, LHX4, PROP1, POU1F1, and SOX3. We aimed to assess their mutation frequency and clinical relevance in children with severe GH deficiency (GHD). METHODS: The Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS; Clinical Trial Registry Number: NCT01088412) was a prospective, open-label, observational research program for pediatric patients receiving GH treatment, conducted in 30 countries between 1999 and 2015. The study included a sub-study to investigate mutations in the genes listed above. PCR products from genomic blood cell DNA were analyzed by Sanger sequencing. DNA variants were classified as pathogenic according to the recommendations of the American College of Medical Genetics and Genomics. Demographic, auxologic, and endocrine data at baseline and during GH treatment were documented and related to the genotyping results. FINDINGS: The analysis comprised 917 patients. In 92 patients (10%) 33 mutations were found, 16 previously described and 17 novel (52%). Mutation carriers were significantly younger, shorter, and more slowly growing than non-carriers. In general, their peak values in GH stimulation tests were very low; however, in 15/77 (20%) patients with GH1, PROP1, and SOX3 mutations they were only moderately diminished (3-6 μg/L). Two patients with a GH1 mutation developed TSH deficiency and one ADH deficiency. Using logistic multi-regression analysis, significant indicators of a mutation were combined pituitary hormone deficiency, greater patient-parent height difference (SDS), low GH peak, and young age. Final height SDS gain in mutation carriers (mean ± SD 3.4 ± 1.4) was greater than in non-carriers (2.0 ± 1.4; P < .001) and in patients with non-GHD short stature. INTERPRETATION: DNA testing for mutations in children with severe GHD shows a positive finding in approximately 10%. Phenotypes of mutation carriers can be variable. The benefit for clinical practice justifies DNA testing as an important component in the diagnostic work-up of patients with severe GHD. FUND: Eli Lilly and Company, Indianapolis, IN, USA. ClinicalTrials.com registration: NCT01088412.
Department of Pediatrics Oregon Health and Science University Portland USA
Eli Lilly and Company Indianapolis USA
Eli Lilly and Company Werner Reimers Strasse 2 4 61352 Bad Homburg Germany
Eli Lilly and Company Windlesham GU20 6PH UK
Gordon Cutler Consultancy LLC Deltaville USA
Zobrazit více v PubMed
Wit J.M., Oostdijk W., Losekoot M., van Duyvenvoorde H.A., Ruivenkamp C.A.L., Kant S.G. Mechanisms in endocrinology: novel genetic causes of short stature. Eur J Endocrinol. 2016;174:R145-R173. PubMed
Giordano M. Genetic causes of isolated and combined pituitary hormone deficiency. Best Pract Res Clin Endocrinol Metab. 2016;30:679–691. PubMed
Alatzoglou K.S., Dattani M.T. Genetic causes and treatment of isolated growth hormone deficiency-an update. Nat Rev Endocrinol. 2010;6:562–576. PubMed
Pfaffle R., Klammt J. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Pract Res Clin Endocrinol Metab. 2011;25:43–60. PubMed
Fang Q., George A.S., Brinkmeier M.L. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev. 2016;37:636–675. PubMed PMC
Cerbone M., Dattani M.T. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency. Growth Horm IGF Res. 2017;37:19–25. PubMed
Dauber A., Rosenfeld R.G., Hirschhorn J.N. Genetic evaluation of short stature. J Clin Endocrinol Metab. 2014;99:3080–3092. PubMed PMC
de Rienzo F., Mellone S., Bellone S. Frequency of genetic defects in combined pituitary hormone deficiency: a systematic review and analysis of a multicentre Italian cohort. Clin Endocrinol (Oxf) 2015;83:849–860. PubMed
Blum W.F., Deal C., Zimmermann A.G. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with idiopathic isolated GH deficiency. Eur J Endocrinol. 2014;170:13–21. PubMed
Deal C., Hasselmann C., Pfäffle R.W. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency. Data from an international observational study. Horm Res Paediatr. 2013;79:283–292. PubMed
Kamijo T., Phillips J.A., Ogawa M., Yuan L.-F., Y-F Shi, X-L Bao. Screening for growth hormone gene deletions in patients with isolated growth hormone deficiency. J Pediatr. 1991;118:245–248. PubMed
Woods K.S., Cundall M., Turton J. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet. 2005;76:833–849. PubMed PMC
Jones A.C., Austin J., Hansen N. Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. Clin Chem. 1999;45:1133–1140. PubMed
Richards S., Aziz N., Bale S. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. PubMed PMC
Arnhold I.J.P., França M.M., Carvalho L.R., Mendonca B.B., Jorge A.A.L. Role of GLI2 in hypopituitarism phenotype. J Mol Endocrinol. 2015;54:R141–R150. PubMed
Cooper D.N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988;78:151–155. PubMed
Lek M., Karczewski K.J., Minikel E.V. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. PubMed PMC
Bertko E., Klammt J., Dusatkova P. Combined pituitary hormone deficiency due to gross deletions in the POU1F1 (PIT-1) and PROP1 genes. J Hum Genet. 2017;62:755–762. PubMed PMC
Hemchand K., Anuradha K., Neeti S. Entire prophet of Pit-1 (PROP-1) gene deletion in an Indian girl with combined pituitary hormone deficiencies. J Pediatr Endocrinol Metab. 2011;24:579–580. PubMed
Ryther R.C., Flynt A.S., Harris B.D., Phillips J.A.I., Patton J.G. GH1 splicing is regulated by multiple enhancers whose mutation produces a dominant-negative GH isoform that can be degraded by allele-specific small interfering RNA (siRNA) Endocrinology. 2004;145:2988–2996. PubMed
Babu D., Mellone S., Fusco I. Novel mutations in the GH gene (GH1) uncover putative splicing regulatory elements. Endocrinology. 2014;155:1786–1792. PubMed
Desmet F.-O., Hamroun D., Lalande M., Collod-Béroud G., Claustres M., Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. PubMed PMC
Fofanova O.V., Evgrafov O.V., Polyakov A.V., Poltaraus A.B., Peterkova V.A., Dedov I.I. A novel IVS2 −2A>T splicing mutation in the GH-1 gene in familial isolated growth hormone deficiency Type II in the spectrum of other splicing mutations in the Russian population. J Clin Endocrinol Metab. 2003;88:820–826. PubMed
Gucev Z., Tasic V., Saranac L. A novel GH1 mutation in a family with isolated growth hormone deficiency type II. Horm Res Paediatr. 2012;77:200–204. PubMed
Takahashi I., Takahashi T., Komatsu M., Sato T., Takada G. An exonic mutation of the GH-1 gene causing familial isolated growth hormone deficiency type II. Clin Genet. 2002;61:222–225. PubMed
Alatzoglou K.S., Turton J.P., Kelberman D. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J Clin Endocrinol Metab. 2009;94:3191–3199. PubMed
Wang Q., Diao Y., Xu Z. Identification of a novel splicing mutation in the growth hormone (GH)-releasing hormone receptor gene in a Chinese family with pituitary dwarfism. Mol Cell Endocrinol. 2009;313:50–56. PubMed
Maheshwari H.G., Silverman B.L., Dupuis J., Baumann G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: dwarfism of sindh. J Clin Endocrinol Metab. 1998;83:4065–4074. PubMed
Pfaeffle R.W., Savage J.J., Hunter C.S. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab. 2007;92:1909–1919. PubMed
Sobrier M.-L., Netchine I., Heinrichs C. Alu-element insertion in the homeodomain of HESX1 and aplasia of the anterior pituitary. Hum Mutat. 2005;25:503. PubMed
Ohta K., Nobukuni Y., Mitsubuchi H. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res Commun. 1992;189:851–855. PubMed
McLennan K., Jeske Y., Cotterill A. Combined pituitary hormone deficiency in Australian children: clinical and genetic correlates. Clin Endocrinol (Oxf) 2003;58:785–794. PubMed
Dattani M.T., Martinez-Barbera J.-P., Thomas P.Q. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19:125–133. PubMed
Durmaz B., Cogulu O., Dizdarer C., Stobbe H., Pfaeffle R., Ozkinay F. A novel homozygous HESX1 mutation causes panhypopituitarism without midline defects and optic nerve anomalies. J Pediatr Endocrinol Metab. 2011;24:779–782. PubMed
McCabe M.J., Alatzoglou K.S., Dattani M.T. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25:115–124. PubMed
Kato Y., Kimoto F., Susa T., Nakayama M., Ishikawa A., Kato T. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Mol Cell Endocrinol. 2010;315:168–173. PubMed
Dusatkova P., Pfaffle R., Brown M.R. Genesis of two most prevalent PROP1 gene variants causing combined pituitary hormone deficiency in 21 populations. Eur J Hum Genet. 2015;24:415–420. PubMed PMC
Böttner A., Keller E., Kratzsch J. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: a longitudinal analysis. J Clin Endocrinol Metab. 2004;89:5256–5265. PubMed
Deladoey J., Fluck C., Buyukgebiz A. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1999;84:1645–1650. PubMed
Grimberg A., Divall S.A., Polychronakos C. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents. Growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res Paediatr. 2016;86:361–397. PubMed
Dattani M.T. Growth hormone deficiency and combined pituitary hormone deficiency. Does the genotype matter? Clin Endocrinol (Oxf) 2005;63:121–130. PubMed
Obermannova B., Pfaeffle R., Zygmunt-Gorska A. Mutations and pituitary morphology in a series of 82 patients with PROP1 gene defects. Horm Res Paediatr. 2011;76:348–354. PubMed
Ranke M.B., Lindberg A. Predicting growth in response to growth hormone treatment. Growth Horm IGF Res. 2009;19:1–11. PubMed
Clayton P.E., Cuneo R.C., Juul A., Monson J.P., Shalet S.M., Tauber M. Consensus statement on the management of the GH-treated adolescent in the transition to adult care. Eur J Endocrinol. 2005;152:165–170. PubMed
Wagner J.K., Eble A., Hindmarsh P.C., Mullis P.E. Prevalence of human GH-1 gene alterations in patients with isolated growth hormone deficiency. Pediatr Res. 1998;43:105–110. PubMed
Kamijo T., Phillips J.A. Detection of molecular heterogeneity in GH-1 gene deletions by analysis of polymerase chain reaction amplification products. J Clin Endocrinol Metab. 1992;74:786–789. PubMed
Cogan J.D., Ramel B., Lehto M. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency—a clinical research center study. J Clin Endocrinol Metab. 1995;80:3591–3595. PubMed
Binder G., Keller E., Mix M. Isolated GH deficiency with dominant inheritance: new mutations, new insights. J Clin Endocrinol Metab. 2001;86:3877–3881. PubMed
Hayashi Y., Yamamoto M., Ohmori S., Kamijo T., Ogawa M., Seo H. Inhibition of growth hormone (GH) secretion by a mutant GH-I gene product in neuroendocrine cells containing secretory granules. An implication for isolated GH deficiency inherited in an autosomal dominant manner. J Clin Endocrinol Metab. 1999;84:2134–2139. PubMed
Vivenza D., Guazzarotti L., Godi M. A novel deletion in the GH1 gene including the IVS3 branch site responsible for autosomal dominant isolated growth hormone deficiency. J Clin Endocrinol Metab. 2006;91:980–986. PubMed
Wajnrajch M.P., Gertner J.M., Harbison M.D., Chua S.C., Leibel R.L. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat Genet. 1996;12:88–90. PubMed
Salvatori R., Fan X., Phillips J.A., Prince M., Levine M.A. Isolated growth hormone (GH) deficiency due to compound heterozygosity for two new mutations in the GH-releasing hormone receptor gene. Clin Endocrinol (Oxf) 2001;54:681–687. PubMed
Sobrier M.-L., Brachet C., Vié-Luton M.-P. Symptomatic heterozygotes and prenatal diagnoses in a nonconsanguineous family with syndromic combined pituitary hormone deficiency resulting from two novel LHX3 mutations. J Clin Endocrinol Metab. 2012;97:E503–E509. PubMed
Riepe F.G., Partsch C.J., Blankenstein O., Monig H., Pfaffle R.W., Sippell W.G. Longitudinal imaging reveals pituitary enlargement preceding hypoplasia in two brothers with combined pituitary hormone deficiency attributable to PROP1 mutation. J Clin Endocrinol Metab. 2001;86:4353–4357. PubMed
Paracchini R., Giordano M., Corrias A. Two new PROP1 gene mutations responsible for compound pituitary hormone deficiency. Clin Genet. 2003;64:142–147. PubMed
Duquesnoy P., Roy A., Dastot F. Human Prop-1: cloning, mapping, genomic structure. Mutations in familial combined pituitary hormone deficiency. FEBS Lett. 1998;437:216–220. PubMed
Vallette-Kasic S., Barlier A., Teinturier C. PROP1 gene screening in patients with multiple pituitary hormone deficiency reveals two sites of hypermutability and a high incidence of corticotroph deficiency. J Clin Endocrinol Metab. 2001;86:4529–4535. PubMed
Wu W., Cogan J.D., Pfaffle R.W. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet. 1998;18:147–149. PubMed
Laumonnier F., Ronce N., Hamel B.C.J. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet. 2002;71:1450–1455. PubMed PMC