Preservation of Spine Motion in the Surgical Treatment of Adolescent Idiopathic Scoliosis Using an Innovative Apical Fusion Technique: A 2-Year Follow-Up Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30276104
PubMed Central
PMC6159724
DOI
10.14444/5053
PII: CustomerIJSSURGERY-D-16-00113
Knihovny.cz E-zdroje
- Klíčová slova
- adolescent idiopathic scoliosis, motion preservation, short apical fusion,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: This trial reports the 2-year and immediate postremoval clinical outcomes of a novel posterior apical short-segment (PASS) correction technique allowing for correction and stabilization of adolescent idiopathic scoliosis (AIS) with limited fusion. METHODS: Twenty-one consecutive female AIS patients were treated at 4 institutions with this novel technique. Arthrodesis was limited to the short apical curve after correction with translational and derotational forces applied to upper and lower instrumented levels. Instrumentation spanned fused and unfused segments with motion and flexibility of unfused segments maintained. The long concave rods were removed at maturity. Radiographic data collected included preoperative and postoperative data for up to 2 years as well as after long rod removal. RESULTS: All 21 patients are beyond 2 years postsurgery. Average age at surgery was 14.2 years (11-17 years). A mean of 10.5 ± 1 levels per patient were stabilized and 5.0 ± 0.5 levels (48%) were fused. Cobb angle improved from 56.1° ± 8.0° to 20.8° ± 7.8° (62.2% improvement) at 1 year and 20.9° ± 8.4°, (62.0% improvement) at 2 years postsurgery. In levels instrumented but not fused, motion was 26° ± 6° preoperatively compared to 10° ± 4° at 1 year postsurgery, demonstrating 38% maintenance of mobility in nonfused segments. There was no report of implant-related complications. CONCLUSIONS: PASS correction technique corrected the deformity profile in AIS patients with a lower implant density while sparing 52% of the instrumented levels from fusion through the 2-year follow-up.
Albany Medical Center Albany New York
Comenius University Bratislava Slovakia
Medicabil Hospital Nilufer Bursa Turkey
Nottingham University Queens Medical Centre Nottingham UK
Nuffield Orthopaedic Centre Oxford University Hospital Headington Oxford UK
San Diego Spine Foundation San Diego California
Seme Device Consulting Savage Minnesota
Sonoran Spine Center Tempe Arizona
University Hospital Brno Orthopaedic Department Faculty Brno Czech Republic
Zobrazit více v PubMed
Hosseini P, Nnadi C, Rehák L, Repko M, Grevitt M, Aydinli U, Carl A, Pawelek J, Crandall D, Akbarnia BA. Analysis of segmental mobility following a novel posterior apical short-segment correction for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2016;41(20):E1223–E1229. doi: 10.1097/BRS.0000000000001607F. PubMed DOI
Wang X, Aubin CE, Labelle H, et al. Biomechanical analysis of corrective forces in spinal instrumentation for scoliosis treatment. Spine (Phila Pa 1976) 2012;37(24):E1479–E1487. PubMed
Wang X, Aubin CE, Crandall DG. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multidegree of freedom postloading pedicle screws. Spine (Phila Pa 1976) 2011;36(2):E95–E104. PubMed
Wang X, Aubin CE, Crandall DG. Biomechanical analysis of 4 types of pedicle screws for scoliotic spine instrumentation. Spine (Phila Pa 1976) 2012;37(14):E823–E835. PubMed
Cho KJ, Suk S, Park SR, et al. Selection of proximal fusion level for adult degenerative lumbar scoliosis. Eur Spine J. 2013;22(2):394–401. PubMed PMC
Engsberg J, Lenke L, Reitenback A, Hollander K, Bridwell K, Blanke K. Prospective evaluation of trunk range of motion in adolescents with idiopathic scoliosis undergoing spinal fusion surgery. Spine (Phila Pa 1976) 2002;27(12):1346–1354. PubMed
Rushton PR, Grevitt MP. Do vertebral derotation techniques offer better outcomes compared to traditional methods in the surgical treatment of adolescent idiopathic scoliosis? Eur Spine J. 2014;23(6):1166–1176. PubMed
Rushton PR, Grevitt MP. What is the effect of surgery on the quality of life of the adolescent with adolescent idiopathic scoliosis? A review and statistical analysis of the literature. Spine (Phila Pa 1976) 2013;38(9):786–794. PubMed
Malfair D, Flemming A, Dvorak M, Munk P, Vertinsky A, Hera M, Graeb D. Radiographic evaluation of scoliosis: review. AJR Integrative Imaging. 2010;194(3 Suppl):S8–S22. PubMed
Behensky H, Cole AA, Freeman BJC, Grewit MP, Mehdina HS, Webb JK. Fixed lumbar apical vertebral rotation predicts spinal decompensation in Lenke type 3c adolescent idiopathic scoliosis after selective posterior thoracic correction and fusion. Eur Spine J. 2007;16(10):1570–1578. PubMed PMC
Lenke LG, Betz RR, Bridwell KH, et al. Inter-observer and intra-observer reliability of the classification of thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am. 1998;80A:1097–1106. PubMed
Newton PO, Marks MC, Bastrom TP, et al. Surgical treatment of Lenke 1 main thoracic idiopathic scoliosis: results of prospective, multicenter study. Spine (Phila Pa 1976) 2013;38(4):328–338. PubMed
Cuartas E, Rasouli A, O'Brien M, Shufflebarger HL. Use of all-pedicle-screw constructs in the treatment of adolescent idiopathic scoliosis. J Am Acad Orthop Surg. 2009;17(9):550–561. PubMed
Harding J, Charosky S, Vialle R, Chopin DH. Lumbar disc degeneration below a long arthrodesis performed for scoliosis in adults) to L4 or L5. Eur Spine J. 2008;17(2):250–254. PubMed PMC
Marks M, Newton P, Petcharaporn M, Bastrom T, Shah S, Betz R, Lonner B, Miyanji F. Postoperative segmental motion of the unfused spine distal to the fusion in 100 patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2013;37(10):826–832. PubMed
Hansen-Algenstaedt N, Schafer C, Beyerlein J, Wiesner L. Percutaneous scoliosis surgery. Eur Spine J. 2012;21(6):1225–1227. PubMed PMC
Martin CT, Pugely AJ, Gao Y, Mendoza-Lattes SA, Ilgenfritz RM, Callaghan JJ, Weinstein SL. Increasing hospital charges for adolescent idiopathic scoliosis in the United States. Spine (Phila Pa 1976) 2014;39(20):1676–1682. PubMed
Larson AN, Polly DW, Jr, Diamond B, Ledonio C, Richards BS, 3rd, Emans JB, Sucato DJ, Johnston CE Minimize Implants Maximize Outcomes Study Group. Does higher anchor density result in increased curve correction and improved clinical outcomes in adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 2014;39(7):571–578. PubMed
Zhao KD, Yang C, Zhao C, Stans AA, An KN. Assessment of noninvasive interbertebral motion measurements in the lumbar spine. J Biomech. 2005;38(9):1943–1946. PubMed
Pearson AM, Spratt KF, Genuario J, McGough W, Kosman K, Lurie J, Sengupta DK. Precision of lumbar intervertebral measurements: does a computer-assisted technique improve reliability? Spine. 2011;36(7):572–580. PubMed
Auerbach J, Namdari S, Milby A, White A, Reddy S, Lonner B, Balderston R. The parallax effect in the evaluation of range of motion in lumbar total disc replacement. SAS J. 2008;2(4):184–188. PubMed PMC
Harrington PR. Surgical instrumentation for management of scoliosis. J Bone Joint Surg. 1960;42:1448.
Harrington PR. The history and development of Harrington instrumentation. Clin Orthop Relat Res. 1973;93:110–112. PubMed
Lonstein J. Adolescent idiopathic scoliosis. The Lancet. 1994;344(8934):1407–1412. PubMed
Robitaille M, Aubin CE, Labelle H. Biomechanical assessment of variable instrumentation strategies in adolescent idiopathic scoliosis: preliminary analysis of 3 patients and 6 scenarios. Stud Health Technol Inform. 2006;123:309–314. PubMed
King HA, Moe JH, Bradford DS, Winter RB. Selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg. 1983;65(9):1302–1314. PubMed
Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Rel Res. 1988;227:10–23. PubMed
Boachie-Adjei O, Bradford DS. Vertebral column resection and arthrodesis for complex spinal deformities. J Spinal Disord. 1991;4(2):193–202. PubMed
Hwang SW, Samdani AF, Marks M, et al. Five-year clinical and radiographic outcomes using pedicle screw only constructs in the treatment of adolescent idiopathic scoliosis. Eur Spine J. 2013;22(6):1292–1299. PubMed PMC
Serhan H, Mhatre D, Newton P, Giorgio P, Sturm P. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves? J Spinal Disord Tech. 2013;26(2):E70–E74. PubMed
Mattila M, Jalanko T, Helenius I. En bloc vertebral column derotation provides spinal derotation but no additional effect on thoracic rib hump correction as compared with no derotation in adolescents undergoing surgery for idiopathic scoliosis with total pedicle screw instrumentation. Spine (Phila Pa 1976) 2013;38(18):1576–1583. PubMed
Martino J, Aubin CE, Labelle H, Wang X, Parent S. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis. Spine (Phila Pa 1976) 2013;38(2):E73–E83. PubMed
Di Silvestre M, Lolli F, Bakaloudis G, Maredi E, Vommaro F, Pastorelli F. Apical vertebral derotation in the posterior treatment of adolescent idiopathic scoliosis: myth or reality? Eur Spine J. 2013;22(2):313–323. PubMed PMC
Chang KW, Chen YY, Leng X, Wu CM, Chen TC, Wang YF, Zhang GZ. Guan-Din method: a novel surgical technique for selective thoracic fusion to maximize the rate of selective thoracic fusion and compensatory correction. Spine (Phila Pa 1976) 2014;39(4):E284–E93. PubMed
McCarthy RE, Luhmann S, Lenke L, McCullough FL. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop. 2014;34(1):1–7. PubMed
Sarwahi V, Horn JJ, Kulkarni PM, Wollowick AL, Lo Y, Gambassi M, Amaral TD. Minimally invasive surgery in patients with adolescent idiopathic scoliosis: is it better than the standard approach? A two-year follow-up study. Clin Spine Surg. 2016;29(8):331–340. PubMed
Sanders JO, Diab M, Richards SB, et al. Fixation points within the main thoracic curve: does more instrumentation produce greater curve correction and improved results? Spine (Phila Pa) 2011;36(21):E1402–1406. PubMed
Yang S, Jones-Quaidoo SM, Eager M, et al. Right adolescent idiopathic thoracic curve (Lenke 1 A and B): does cost of instrumentation and implant density improve radiographic and cosmetic parameters? Eur Spine J. 2011;20(7):1039–1047. PubMed PMC
Li J, Cheung KM, Samartzis D, Ganal-Antonio AK, Zhu X, Li M, Luk KD. Key-vertebral screws strategy for main thoracic curve correction in patients with adolescent idiopathic scoliosis. Clin Spine Surg. 2016;29(8):E434–E441. PubMed
Liu T, Hai Y. Sagittal plane analysis of selective posterior thoracic spinal fusion in adolescent idiopathic scoliosis: a comparison study of all pedicle screw and hybrid instrumentation. J Spinal Disord Tech. 2014;27(5):277–282. PubMed
Rehak L. A device for the dynamic correction and stabilization of spinal deformities. First Interdisciplinary World Congress on Spinal Surgery 2000. 2000. pp. 623–627. In: Brock M, Schwarz W, Wille C, eds. Bologna, Italy: Monduzzi Editore, International Proceedings Division.
McCarthy RE, McCullough FL. Shilla growth guidance for early-onset scoliosis: results after a minimum of five years of follow-up. J Bone Joint Surg Am. 2015;97(19):1578–1584. PubMed
Luk KD, Lu DS, Cheung KM, et al. A prospective comparison of the coronal deformity correction in thoracic scoliosis using four different instrumentations and the fulcrum-bending radiograph. Spine (Phila Pa 1976) 2004;29(5):560–563. PubMed
Delorme S, Labelle H. Aubin CE. Intraoperative comparison of two instrumentation techniques for the correction of adolescent idiopathic scoliosis: rod rotation and translation. Spine (Phila Pa 1976) 1999;24(19):2011–2017. PubMed
Girardi FP, Boachie-Adjei O, Burke SW, et al. Surgical treatment of adolescent idiopathic scoliosis: a comparative study of two segmental instrumentation systems. J Spinal Disord. 2001;14(1):46–53. PubMed
Kim YJ, Lenke LG, Kim J, et al. Comparative analysis of pedicle crew versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2006;31(3):291–298. PubMed
Cao Y, Xiong W, Li F. Pedicle screw versus hybrid construct instrumentation in adolescent idiopathic scoliosis: meta-analysis of thoracic kyphosis. Spine (Phila Pa 1976) 2014;39(13):E800–E810. PubMed
Rhee JM, Bridwell KH, Won DS, et al. Sagittal plane analysis of adolescent idiopathic scoliosis: the effect of anterior versus posterior instrumentation. Spine (Phila Pa 1976) 2002;27(21):2350–2356. PubMed
Lowenstein JE, Matsumoto H, Vitale MG, et al. Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine (Phila Pa 1976) 2007;32(4):448–452. PubMed
Sucato DJ, Agrawal S, O'Brien MF, et al. Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: a multicenter comparison of three surgical approaches. Spine (Phila Pa 1976) 2008;33(24):2630–2636. PubMed
Glattes RC, Burton DC, Lai SM, et al. The reliability and concurrent validity of the Scoliosis Research Society–22r patient questionnaire compared with the Child Health Questionnaire–CF87 patient questionnaire for adolescent spinal deformity. Spine (Phila Pa 1976) 2007;32(16):1778–1784. PubMed
Merola AA, Haher TR, Brkaric M, et al. A multicenter study of the outcomes of the surgical treatment of adolescent idiopathic scoliosis using the Scoliosis Research Society (SRS) outcome instrument. Spine (Phila Pa 1976) 2002;27(18):2046–2051. PubMed