Megahertz serial crystallography

. 2018 Oct 02 ; 9 (1) : 4025. [epub] 20181002

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30279492

Grantová podpora
Project oriented funds Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft) - International
DFG-EXC1074 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
R01 GM117342 NIGMS NIH HHS - United States
R01 GM095583 NIGMS NIH HHS - United States
609920 European Research Council - International
Wellcome Trust - United Kingdom

Odkazy

PubMed 30279492
PubMed Central PMC6168542
DOI 10.1038/s41467-018-06156-7
PII: 10.1038/s41467-018-06156-7
Knihovny.cz E-zdroje

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

Australian Research Council Centre of Excellence in Advanced Molecular Imaging Department of Chemistry and Physics La Trobe Institute for Molecular Sciences La Trobe University Bundoora VIC 3086 Australia

Biological Research Centre Hungarian Academy of Sciences Temesvári krt 62 Szeged 6726 Hungary

Biomedical and 10 Ray Physics Department of Applied Physics AlbaNova University Center KTH Royal Institute of Technology Stockholm 106 91 Sweden

Center for Free Electron Laser Science Deutsches Elektronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany

Condensed Matter Physics Department of Physics Chalmers University of Technology Gothenburg 412 96 Sweden

Depart Ingeniería Aeroespacial y Mecánica de Fluidos ETSI Universidad de Sevilla 41092 Sevilla Spain

Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry 82152 Martinsried Germany

Department of Chemistry Universität Hamburg Martin Luther King Platz 6 20146 Hamburg Germany

Department of Chemistry University at Buffalo 359 Natural Sciences Complex Buffalo NY 14260 USA

Department of Physics Arizona State University Tempe AZ 85287 USA

Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Deutsches Elektronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany

Diamond Light Source Research Complex at Harwell and University of Oxford Diamond House Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK

Division of Structural Biology Headington Oxford OX3 7BN UK

ELI Beamlines Institute of Physics of the Czech Academy of Sciences Na Slovance 2 182 21 Prague Czech Republic

Engineering and the Environment University of Southampton SO17 1BJ Southampton UK

European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany

Hamburg University of Technology Vision Systems E 2 Harburger Schloßstr 20 21079 Hamburg Germany

Institute for Biochemistry and Molecular Biology Laboratory for Structural Biology of Infection and Inflammation Universität Hamburg Notkestrasse 85 22607 Hamburg Germany

Institute for Glycomics Griffith University Southport QLD 4222 Australia

Institute of Biochemistry Center for Structural and Cell Biology in Medicine University of Lübeck Ratzeburger Allee 160 23562 Lübeck Germany

Institute of Medical Microbiology Virology and Hygiene University Medical Center Hamburg Eppendorf 20246 Hamburg Germany

Institute of Molecular Biology SAS Dubravska cesta 21 845 51 Bratislava Slovakia

Institute of Nanostructure and Solid State Physics Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Integrated Biology Infrastructure Life Science Facility at the European XFEL Holzkoppel 4 22869 Schenefeld Germany

Laboratory of Molecular Biophysics Department of Cell and Molecular Biology Uppsala University Uppsala 751 24 Sweden

Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA

Linac Coherent Light Source SLAC National Accelerator Laboratory Menlo Park 94025 CA USA

Max Planck Institute for Medical Research Jahnstr 29 69120 Heidelberg Germany

Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany

Mid Sweden University Holmgatan 10 85170 Sundsvall Sweden

NERSC Lawrence Berkeley National Laboratory Berkeley 94720 CA USA

Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen Switzerland

Physics Department Rutgers University Newark Newark NJ 07102 USA

Physics Department University of Wisconsin Milwaukee 3135 N Maryland Ave Milwaukee WI 53211 USA

School of Chemistry and Molecular Biosciences Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre University of Queensland Brisbane QLD 4072 Australia

School of Molecular Sciences and Biodesign Center for Applied Structural Discovery Arizona State University Tempe AZ 85287 1604 USA

The Hamburg Center for Ultrafast Imaging Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Zobrazit více v PubMed

Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC

Boutet S, et al. High-resolution protein structure determination by serial femtosecond crystallography. Science. 2012;337:362–364. doi: 10.1126/science.1217737. PubMed DOI PMC

Kang Y, et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature. 2015;523:561–567. doi: 10.1038/nature14656. PubMed DOI PMC

Pande K, et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science. 2016;352:725–729. doi: 10.1126/science.aad5081. PubMed DOI PMC

Stagno JR, et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature. 2017;541:242–246. doi: 10.1038/nature20599. PubMed DOI PMC

Gati C, et al. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc. Natl. Acad. Sci. USA. 2017;114:2247–2252. doi: 10.1073/pnas.1609243114. PubMed DOI PMC

Suga M, et al. Native structure of photosystem II at 1.95 A ° resolution viewed by femtosecond X-ray pulses. Nature. 2015;517:99–103. doi: 10.1038/nature13991. PubMed DOI

Altarelli M, Mancuso AP. Structural biology at the European X-ray free-electron laser facility. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130311–20130311. doi: 10.1098/rstb.2013.0311. PubMed DOI PMC

Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI

Chapman HN, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006;2:839–843. doi: 10.1038/nphys461. DOI

Holton JM. A beginner's guide to radiation damage. J. Synchrotron Rad. 2009;16:133–142. doi: 10.1107/S0909049509004361. PubMed DOI PMC

Holton JM, Frankel KA. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. D Biol. Crystallogr. 2010;66:393–408. doi: 10.1107/S0907444910007262. PubMed DOI PMC

Ishikawa T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics. 2012;6:540–544. doi: 10.1038/nphoton.2012.141. DOI

Yabashi M, Tanaka H, Ishikawa T. Overview of the SACLA facility. J. Synchrotron Rad. 2015;22:477–484. doi: 10.1107/S1600577515004658. PubMed DOI PMC

White WE, Robert A, Dunne M. The Linac coherent light source. J. Synchrotron Rad. 2015;22:472–476. doi: 10.1107/S1600577515005196. PubMed DOI PMC

Stan CA, et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 2016;12:966–971. doi: 10.1038/nphys3779. DOI

Both A, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2017;72:2483–2488. doi: 10.1093/jac/dkx179. PubMed DOI

Patel MP, et al. The drug-resistant variant P167S expands the substrate profile of CTX-M β-lactamases for oxyimino-cephalosporin antibiotics by enlarging the active site upon acylation. Biochem.-Us. 2017;56:3443–3453. doi: 10.1021/acs.biochem.7b00176. PubMed DOI PMC

Chen Y, Delmas J, Sirot J, Shoichet B, Bonnet R. Atomic resolution structures of CTX-M beta-lactamases: Extended spectrum activities from increased mobility and decreased stability. J. Mol. Biol. 2005;348:349–362. doi: 10.1016/j.jmb.2005.02.010. PubMed DOI

Olmos JL, et al. Enzyme intermediates captured ‘on the fly’ by mix-and-inject serial crystallography. BMC Biol. 2018;16:1–15. doi: 10.1186/s12915-018-0524-5. PubMed DOI PMC

Altarelli, M. et al. XFEL: The European X-Ray Free-Electron Laser: Technical Design Report (DESY, Hamburg, 2006).

Zeldin OB, Gerstel M, Garman EF. RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J. Appl. Crystallogr. 2013;46:1225–1230. doi: 10.1107/S0021889813011461. DOI

Wiedorn MO, et al. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ. 2018;5:1–11. doi: 10.1107/S2052252518008369. PubMed DOI PMC

Barty A, et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 2014;47:1118–1131. doi: 10.1107/S1600576714007626. PubMed DOI PMC

White TA, et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 2012;45:335–341. doi: 10.1107/S0021889812002312. DOI

White TA, et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 2016;49:680–689. doi: 10.1107/S1600576716004751. PubMed DOI PMC

Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC

Terwilliger TC, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 2008;64:61–69. doi: 10.1107/S090744490705024X. PubMed DOI PMC

King DT, King AM, Lal SM, Wright GD, Strynadka NCJ. Molecular mechanism of avibactam-mediated β-lactamase inhibition. ACS Infect. Dis. 2015;1:175–184. doi: 10.1021/acsinfecdis.5b00007. PubMed DOI

Grünbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun.9, 3487 (2018). PubMed PMC

Stellato F, et al. Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ. 2014;1:204–212. doi: 10.1107/S2052252514010070. PubMed DOI PMC

Beyerlein KR, et al. Mix-and-diffuse serial synchrotron crystallography. IUCrJ. 2017;4:769–777. doi: 10.1107/S2052252517013124. PubMed DOI PMC

DePonte DP, et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 2008;41:195505. doi: 10.1088/0022-3727/41/19/195505. DOI

Oberthuer D, et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998;80:285–288. doi: 10.1103/PhysRevLett.80.285. DOI

Nelson G, et al. Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Opt. Express. 2016;24:11515–11516. doi: 10.1364/OE.24.011515. PubMed DOI PMC

Beyerlein KR, et al. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. Rev. Sci. Instrum. 2015;86:125104. doi: 10.1063/1.4936843. PubMed DOI

Mariani V, et al. OnDA: online data analysis and feedback for serial X-ray imaging. J. Appl. Crystallogr. 2016;49:1073–1080. doi: 10.1107/S1600576716007469. PubMed DOI PMC

Heisen, B. et al. Karabo: An integrated software framework combining control, data management, and scientific computing tasks. In Proc. International Conference on Accelerator & Large Experimental Physics Control Systems, FRCOAAB02, 1465-1468 (San Francisco, 2013).

Fangohr, H. et al. Data analysis support in Karabo at European XFEL. In Proc. 16th Int. Conf. on Accelerator and Large Experimental Control Systems, TUCPA01, 245-252 (Barcelona, Spain, 2017).

Kuster M., Boukhelef D., Donato M., Dambietz J.-S., Hauf S., Maia L., Raab N., Szuba J., Turcato M., Wrona K., Youngman C. Detectors and Calibration Concept for the European XFEL. Synchrotron Radiation News. 2014;27(4):35–38. doi: 10.1080/08940886.2014.930809. DOI

Powell HR. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 1999;55:1690–1695. doi: 10.1107/S0907444999009506. PubMed DOI

White TA, et al. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D Biol. Crystallogr. 2013;69:1231–1240. doi: 10.1107/S0907444913013620. PubMed DOI PMC

Yefanov O, et al. Accurate determination of segmented X-ray detector geometry. Opt. Express. 2015;23:28459–12. doi: 10.1364/OE.23.028459. PubMed DOI PMC

Ginn HM, Stuart DI. The slip-and-slide algorithm: a refinement protocol for detector geometry. J. Synchrotron Rad. 2017;24:1–11. doi: 10.1107/S1600577517013327. PubMed DOI PMC

Brehm W, Diederichs K. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. D Biol. Crystallogr. 2014;70:101–109. doi: 10.1107/S1399004713025431. PubMed DOI

Winn MD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC

McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC

Afonine PV, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012;68:352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Urzhumtseva L, Afonine PV, Adams PD, Urzhumtsev A. Crystallographic model quality at a glance. Acta Crystallogr. D Biol. Crystallogr. 2009;65:297–300. doi: 10.1107/S0907444908044296. PubMed DOI PMC

Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC

Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995;8:127–134. doi: 10.1093/protein/8.2.127. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review

. 2019 Sep 26 ; 24 (19) : . [epub] 20190926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...