Megahertz serial crystallography
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Project oriented funds
Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft) - International
DFG-EXC1074
Deutsche Forschungsgemeinschaft (German Research Foundation) - International
R01 GM117342
NIGMS NIH HHS - United States
R01 GM095583
NIGMS NIH HHS - United States
609920
European Research Council - International
Wellcome Trust - United Kingdom
PubMed
30279492
PubMed Central
PMC6168542
DOI
10.1038/s41467-018-06156-7
PII: 10.1038/s41467-018-06156-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
Biological Research Centre Hungarian Academy of Sciences Temesvári krt 62 Szeged 6726 Hungary
Depart Ingeniería Aeroespacial y Mecánica de Fluidos ETSI Universidad de Sevilla 41092 Sevilla Spain
Department of Chemistry Universität Hamburg Martin Luther King Platz 6 20146 Hamburg Germany
Department of Chemistry University at Buffalo 359 Natural Sciences Complex Buffalo NY 14260 USA
Department of Physics Arizona State University Tempe AZ 85287 USA
Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany
Deutsches Elektronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
Division of Structural Biology Headington Oxford OX3 7BN UK
Engineering and the Environment University of Southampton SO17 1BJ Southampton UK
European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
Hamburg University of Technology Vision Systems E 2 Harburger Schloßstr 20 21079 Hamburg Germany
Institute for Glycomics Griffith University Southport QLD 4222 Australia
Institute of Molecular Biology SAS Dubravska cesta 21 845 51 Bratislava Slovakia
Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA
Linac Coherent Light Source SLAC National Accelerator Laboratory Menlo Park 94025 CA USA
Max Planck Institute for Medical Research Jahnstr 29 69120 Heidelberg Germany
Mid Sweden University Holmgatan 10 85170 Sundsvall Sweden
NERSC Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen Switzerland
Physics Department Rutgers University Newark Newark NJ 07102 USA
Physics Department University of Wisconsin Milwaukee 3135 N Maryland Ave Milwaukee WI 53211 USA
Zobrazit více v PubMed
Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC
Boutet S, et al. High-resolution protein structure determination by serial femtosecond crystallography. Science. 2012;337:362–364. doi: 10.1126/science.1217737. PubMed DOI PMC
Kang Y, et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature. 2015;523:561–567. doi: 10.1038/nature14656. PubMed DOI PMC
Pande K, et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science. 2016;352:725–729. doi: 10.1126/science.aad5081. PubMed DOI PMC
Stagno JR, et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature. 2017;541:242–246. doi: 10.1038/nature20599. PubMed DOI PMC
Gati C, et al. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc. Natl. Acad. Sci. USA. 2017;114:2247–2252. doi: 10.1073/pnas.1609243114. PubMed DOI PMC
Suga M, et al. Native structure of photosystem II at 1.95 A ° resolution viewed by femtosecond X-ray pulses. Nature. 2015;517:99–103. doi: 10.1038/nature13991. PubMed DOI
Altarelli M, Mancuso AP. Structural biology at the European X-ray free-electron laser facility. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130311–20130311. doi: 10.1098/rstb.2013.0311. PubMed DOI PMC
Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI
Chapman HN, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006;2:839–843. doi: 10.1038/nphys461. DOI
Holton JM. A beginner's guide to radiation damage. J. Synchrotron Rad. 2009;16:133–142. doi: 10.1107/S0909049509004361. PubMed DOI PMC
Holton JM, Frankel KA. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. D Biol. Crystallogr. 2010;66:393–408. doi: 10.1107/S0907444910007262. PubMed DOI PMC
Ishikawa T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics. 2012;6:540–544. doi: 10.1038/nphoton.2012.141. DOI
Yabashi M, Tanaka H, Ishikawa T. Overview of the SACLA facility. J. Synchrotron Rad. 2015;22:477–484. doi: 10.1107/S1600577515004658. PubMed DOI PMC
White WE, Robert A, Dunne M. The Linac coherent light source. J. Synchrotron Rad. 2015;22:472–476. doi: 10.1107/S1600577515005196. PubMed DOI PMC
Stan CA, et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 2016;12:966–971. doi: 10.1038/nphys3779. DOI
Both A, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2017;72:2483–2488. doi: 10.1093/jac/dkx179. PubMed DOI
Patel MP, et al. The drug-resistant variant P167S expands the substrate profile of CTX-M β-lactamases for oxyimino-cephalosporin antibiotics by enlarging the active site upon acylation. Biochem.-Us. 2017;56:3443–3453. doi: 10.1021/acs.biochem.7b00176. PubMed DOI PMC
Chen Y, Delmas J, Sirot J, Shoichet B, Bonnet R. Atomic resolution structures of CTX-M beta-lactamases: Extended spectrum activities from increased mobility and decreased stability. J. Mol. Biol. 2005;348:349–362. doi: 10.1016/j.jmb.2005.02.010. PubMed DOI
Olmos JL, et al. Enzyme intermediates captured ‘on the fly’ by mix-and-inject serial crystallography. BMC Biol. 2018;16:1–15. doi: 10.1186/s12915-018-0524-5. PubMed DOI PMC
Altarelli, M. et al. XFEL: The European X-Ray Free-Electron Laser: Technical Design Report (DESY, Hamburg, 2006).
Zeldin OB, Gerstel M, Garman EF. RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J. Appl. Crystallogr. 2013;46:1225–1230. doi: 10.1107/S0021889813011461. DOI
Wiedorn MO, et al. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ. 2018;5:1–11. doi: 10.1107/S2052252518008369. PubMed DOI PMC
Barty A, et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 2014;47:1118–1131. doi: 10.1107/S1600576714007626. PubMed DOI PMC
White TA, et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 2012;45:335–341. doi: 10.1107/S0021889812002312. DOI
White TA, et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 2016;49:680–689. doi: 10.1107/S1600576716004751. PubMed DOI PMC
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Terwilliger TC, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 2008;64:61–69. doi: 10.1107/S090744490705024X. PubMed DOI PMC
King DT, King AM, Lal SM, Wright GD, Strynadka NCJ. Molecular mechanism of avibactam-mediated β-lactamase inhibition. ACS Infect. Dis. 2015;1:175–184. doi: 10.1021/acsinfecdis.5b00007. PubMed DOI
Grünbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun.9, 3487 (2018). PubMed PMC
Stellato F, et al. Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ. 2014;1:204–212. doi: 10.1107/S2052252514010070. PubMed DOI PMC
Beyerlein KR, et al. Mix-and-diffuse serial synchrotron crystallography. IUCrJ. 2017;4:769–777. doi: 10.1107/S2052252517013124. PubMed DOI PMC
DePonte DP, et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 2008;41:195505. doi: 10.1088/0022-3727/41/19/195505. DOI
Oberthuer D, et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998;80:285–288. doi: 10.1103/PhysRevLett.80.285. DOI
Nelson G, et al. Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Opt. Express. 2016;24:11515–11516. doi: 10.1364/OE.24.011515. PubMed DOI PMC
Beyerlein KR, et al. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. Rev. Sci. Instrum. 2015;86:125104. doi: 10.1063/1.4936843. PubMed DOI
Mariani V, et al. OnDA: online data analysis and feedback for serial X-ray imaging. J. Appl. Crystallogr. 2016;49:1073–1080. doi: 10.1107/S1600576716007469. PubMed DOI PMC
Heisen, B. et al. Karabo: An integrated software framework combining control, data management, and scientific computing tasks. In Proc. International Conference on Accelerator & Large Experimental Physics Control Systems, FRCOAAB02, 1465-1468 (San Francisco, 2013).
Fangohr, H. et al. Data analysis support in Karabo at European XFEL. In Proc. 16th Int. Conf. on Accelerator and Large Experimental Control Systems, TUCPA01, 245-252 (Barcelona, Spain, 2017).
Kuster M., Boukhelef D., Donato M., Dambietz J.-S., Hauf S., Maia L., Raab N., Szuba J., Turcato M., Wrona K., Youngman C. Detectors and Calibration Concept for the European XFEL. Synchrotron Radiation News. 2014;27(4):35–38. doi: 10.1080/08940886.2014.930809. DOI
Powell HR. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 1999;55:1690–1695. doi: 10.1107/S0907444999009506. PubMed DOI
White TA, et al. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D Biol. Crystallogr. 2013;69:1231–1240. doi: 10.1107/S0907444913013620. PubMed DOI PMC
Yefanov O, et al. Accurate determination of segmented X-ray detector geometry. Opt. Express. 2015;23:28459–12. doi: 10.1364/OE.23.028459. PubMed DOI PMC
Ginn HM, Stuart DI. The slip-and-slide algorithm: a refinement protocol for detector geometry. J. Synchrotron Rad. 2017;24:1–11. doi: 10.1107/S1600577517013327. PubMed DOI PMC
Brehm W, Diederichs K. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. D Biol. Crystallogr. 2014;70:101–109. doi: 10.1107/S1399004713025431. PubMed DOI
Winn MD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Afonine PV, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012;68:352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Urzhumtseva L, Afonine PV, Adams PD, Urzhumtsev A. Crystallographic model quality at a glance. Acta Crystallogr. D Biol. Crystallogr. 2009;65:297–300. doi: 10.1107/S0907444908044296. PubMed DOI PMC
Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995;8:127–134. doi: 10.1093/protein/8.2.127. PubMed DOI
Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review