PHO15 genes of Candida albicans and Candida parapsilosis encode HAD-type phosphatases dephosphorylating 2-phosphoglycolate

. 2019 Jan 01 ; 19 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30304493

Most of the phosphatases of human fungal pathogens Candida albicans and C. parapsilosis have never been experimentally characterised, although dephosphorylation reactions are central to many biological processes. PHO15 genes of these yeasts have been annotated as the sequences encoding 4-nitrophenyl phosphatase, on the basis of homology to PHO13 gene from the bakers' yeast Saccharomyces cerevisiae. To examine the real function of these potential phosphatases from Candida spp., CaPho15p and CpPho15p were prepared using expression in Escherichia coli and characterised. They share the hallmark motifs of the haloacid dehalogenase superfamily, readily hydrolyse 4-nitrophenyl phosphate at pH 8-8.3 and require divalent cations (Mg2+, Mn2+ or Co2+) as cofactors. CaPho15p and CpPho15p did not dephosphorylate phosphopeptides, but rather hydrolysed molecules related to carbohydrate metabolism. The preferred substrate for the both phosphatases was 2-phosphoglycolate. Among the other molecules tested, CaPho15 showed preference for glyceraldehyde phosphate and ß-glycerol phosphate, while CpPho15 dephosphorylated mainly 1,3-dihydroxyacetone phosphate. This type of substrate specificity indicates that CaPho15 and CpPho15 may be a part of metabolic repair system of C. albicans and C. parapsilosis.

Zobrazit více v PubMed

Baginski ES, Epstein E, Zak B. Review of phosphate methodologies. Ann Clin Lab Sci 1975;5:399–416. PubMed

Berman J.  Candida albicans. Curr Biol 2012;22:R620–2. PubMed

Bezerra AR, Simões J, Lee W et al. . Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc Natl Acad Sci USA 2013;110:11079–84. PubMed PMC

Bilir SP, Ferrufino CP, Pfaller MA et al. . The economic impact of rapid Candida species identification by T2 Candida among high-risk patients. Future Microbiol 2015;10:1133–44. PubMed

Bondaryk M, Kurzątkowski W, Staniszewska M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Adv Dermatol Allergol Dermatol Alergol 2013;30:293–301. PubMed PMC

Brown AJP, Budge S, Kaloriti D et al. . Stress adaptation in a pathogenic fungus. J Exp Biol 2014;217:144–55. PubMed PMC

Burroughs AM, Allen KN, Dunaway-Mariano D et al. . Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 2006;361:1003–34. PubMed

Butler G, Rasmussen MD, Lin MF et al. . Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009;459:657–62. PubMed PMC

Casadevall A, Pirofski L. What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun 2015;83:2–7. PubMed PMC

Collard F, Baldin F, Gerin I et al. . A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol 2016;12:601–7. PubMed

Ding C, Vidanes GM, Maguire SL et al. . Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans. PLoS One 2011;6:e28151. PubMed PMC

Enjalbert B, Smith DA, Cornell MJ et al. . Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 2006;17:1018–32. PubMed PMC

Gobom J, Nordhoff E, Mirgorodskaya E et al. . Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 1999;34:105–16. PubMed

Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 2014;20:5–10. PubMed

Haimovich-Dayan M, Lieman-Hurwitz J, Orf I et al. . Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803? Environ Microbiol 2015;17:1794–804. PubMed

Hnisz D, Schwarzmüller T, Kuchler K. Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol 2009;74:1–15. PubMed PMC

Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987;57:267–72. PubMed

Horton P, Park K-J, Obayashi T et al. . WoLF PSORT: protein localization predictor. Nucleic Acids Res 2007;35:W585–7. PubMed PMC

Jones T, Federspiel NA, Chibana H et al. . The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 2004;101:7329–34. PubMed PMC

Kelly GJ, Latzko E. Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate. FEBS Lett 1976;68:55–58. PubMed

Kuznetsova E, Nocek B, Brown G et al. . Functional diversity of haloacid dehalogenase superfamily phosphatases from Saccharomyces cerevisiae: biochemical, structural, and evolutionary insights. J Biol Chem 2015;290:18678–98. PubMed PMC

Larsen MR, Thingholm TE, Jensen ON et al. . Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005;4:873–86. PubMed

Molin M, Norbeck J, Blomberg A. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone. J Biol Chem 2003;278:1415–23. PubMed

Motosugi K, Esaki N, Soda K. Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. J Bacteriol 1982;150:522–7. PubMed PMC

Norman EG, Colman B. Purification and characterization of phosphoglycolate phosphatase from the Cyanobacterium Coccochloris peniocystis. Plant Physiol 1991;95:693–8. PubMed PMC

O’Brien PJ, Herschlag D. Alkaline phosphatase revisited:  hydrolysis of alkyl phosphates. Biochemistry 2002;41:3207–25. PubMed

Pabis A, Kamerlin SCL. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily. Curr Opin Struct Biol 2016;37:14–21. PubMed

Pellicer MT, Nuñez MF, Aguilar J et al. . Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J Bacteriol 2003;185:5815–21. PubMed PMC

Petersen TN, Brunak S, Heijne G von et al. . SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785–6. PubMed

Pfaller MA, Castanheira M. Nosocomial candidiasis: antifungal stewardship and the importance of rapid diagnosis. Med Mycol 2016;54:1–22. PubMed

Polke M, Hube B, Jacobsen ID. Candida survival strategies. Advances in Applied Microbiology 2015;91:139–235. 10.1016/bs.aambs.2014.12.002 PubMed DOI

Sambrook J, Rusell DW. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor laboratory Press,2001.

Seifried A, Schultz J, Gohla A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 2013;280:549–71. PubMed

Shevchenko A, Tomas H, Havli J et al. . In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2007;1:2856–60. PubMed

Tuleva B, Vasileva-Tonkova E, Galabova D. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol Lett 1998;161:139–44. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...