Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
648143
EC | European Research Council (ERC) - International
PubMed
30315196
PubMed Central
PMC6185902
DOI
10.1038/s41467-018-06562-x
PII: 10.1038/s41467-018-06562-x
Knihovny.cz E-zdroje
- MeSH
- chromozomy hub genetika MeSH
- fylogeneze MeSH
- genetická vazba genetika MeSH
- genom fungální genetika MeSH
- genomika MeSH
- Neurospora klasifikace genetika MeSH
- rekombinace genetická genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long evolutionary separation. We conclude that they have in a convergent manner accumulated similar patterns of tandem inversions and dense repeat clusters, presumably in response to similar needs to create linkage between genes causing drive and resistance.
Department of Organismal Biology Uppsala University Norbyvägen 18D 752 36 Uppsala Sweden
School of Biological Sciences Illinois State University Normal IL 61790 USA
Zobrazit více v PubMed
Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Harvard University Press, Cambridge, MA, 2009).
Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl. Acad. Sci. USA. 2011;108:10863–10870. doi: 10.1073/pnas.1102343108. PubMed DOI PMC
Rice WR. Nothing in genetics makes sense except in light of genomic conflict. Annu. Rev. Ecol. Evol. Syst. 2013;44:217–237. doi: 10.1146/annurev-ecolsys-110411-160242. DOI
Sandler L, Novitski E. Meiotic drive as an evolutionary force. Am. Nat. 1957;91:105–110. doi: 10.1086/281969. DOI
Lindholm AK, et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 2016;31:315–326. doi: 10.1016/j.tree.2016.02.001. PubMed DOI
Lyttle TW. Segregation distorters. Annu. Rev. Genet. 1991;25:511–581. doi: 10.1146/annurev.ge.25.120191.002455. PubMed DOI
Larracuente AM, Presgraves DC. The selfish segregation distorter gene complex of Drosophila melanogaster. Genetics. 2012;192:33–53. doi: 10.1534/genetics.112.141390. PubMed DOI PMC
Kelemen RK, Vicoso B. Complex history and differentiation patterns of the t-haplotype, a mouse meiotic driver. Genetics. 2018;208:365–375. doi: 10.1534/genetics.117.300513. PubMed DOI PMC
Jaenike J. Sex chromosome meiotic drive. Annu. Rev. Ecol. Syst. 2001;32:25–49. doi: 10.1146/annurev.ecolsys.32.081501.113958. DOI
Wang J, et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature. 2013;493:664–668. doi: 10.1038/nature11832. PubMed DOI
Branco S, et al. Multiple convergent supergene evolution events in mating-type chromosomes. Nat. Commun. 2018;9:2000. doi: 10.1038/s41467-018-04380-9. PubMed DOI PMC
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC
Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993;134:1289–1303. PubMed PMC
Corcoran P, et al. Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus Neurospora tetrasperma. Genome Res. 2016;26:486–498. doi: 10.1101/gr.197244.115. PubMed DOI PMC
Whittle CA, Sun Y, Johannesson H. Degeneration in codon usage within the region of suppressed recombination in the mating-type chromosomes of Neurospora tetrasperma. Eukaryot. Cell. 2011;10:594–603. doi: 10.1128/EC.00284-10. PubMed DOI PMC
Fontanillas E, et al. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. Mol. Biol. Evol. 2015;32:928–943. doi: 10.1093/molbev/msu396. PubMed DOI PMC
Artzt K. Gene mapping within the T/t complex of the mouse. III: t-lethal genes are arranged in three clusters on chromosome 17. Cell. 1984;39:565–572. doi: 10.1016/0092-8674(84)90463-X. PubMed DOI
Didion JP, et al. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genet. 2015;11:e1004850. doi: 10.1371/journal.pgen.1004850. PubMed DOI PMC
Brand CL, Larracuente AM, Presgraves DC. Origin, evolution, and population genetics of the selfish Segregation Distorter gene duplication in European and African populations of Drosophila melanogaster. Evolution. 2015;69:1271–1283. doi: 10.1111/evo.12658. PubMed DOI PMC
Dyer KA, Charlesworth B, Jaenike J. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc. Natl. Acad. Sci. 2007;104:1587–1592. doi: 10.1073/pnas.0605578104. PubMed DOI PMC
Pieper KE, Dyer KA. Occasional recombination of a selfish X-chromosome may permit its persistence at high frequencies in the wild. J. Evol. Biol. 2016;29:2229–2241. doi: 10.1111/jeb.12948. PubMed DOI PMC
Dalstra HJP, Swart K, Debets AJM, Saupe SJ, Hoekstra RF. Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc. Natl. Acad. Sci. 2003;100:6616–6621. doi: 10.1073/pnas.1030058100. PubMed DOI PMC
Grognet P, Lalucque H, Malagnac F, Silar P. Genes that bias Mendelian segregation. PLoS Genet. 2014;10:e1004387. doi: 10.1371/journal.pgen.1004387. PubMed DOI PMC
Nuckolls NL, et al. wtf genes are prolific dual poison-antidote meiotic drivers. eLife. 2017;6:e26033. doi: 10.7554/eLife.26033. PubMed DOI PMC
Hu W, et al. A large gene family in fission yeast encodes spore killers that subvert Mendel’s law. eLife. 2017;6:e26057. doi: 10.7554/eLife.26057. PubMed DOI PMC
Turner BC, Perkins DD. Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics. 1979;93:587–606. PubMed PMC
Campbell JL, Turner BC. Recombination block in the spore killer region of Neurospora. Genome. 1987;29:129–135. doi: 10.1139/g87-022. PubMed DOI
Harvey AM, et al. A critical component of meiotic drive in Neurospora is located near a chromosome rearrangement. Genetics. 2014;197:1165–1174. doi: 10.1534/genetics.114.167007. PubMed DOI PMC
Rhoades, N. A. et al. Identification of a genetic element required for spore killing in Neurospora. Preprint at https://www.biorxiv.org/content/early/2018/08/29/404004 (2018).
Hammond TM, Rehard DG, Xiao H, Shiu PKT. Molecular dissection of Neurospora spore killer meiotic drive elements. Proc. Natl. Acad. Sci. USA. 2012;109:12093–12098. doi: 10.1073/pnas.1203267109. PubMed DOI PMC
Corcoran P, et al. A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system. Mol. Phylogenet. Evol. 2014;78:136–147. doi: 10.1016/j.ympev.2014.05.007. PubMed DOI
Sun Y, Svedberg J, Hiltunen M, Corcoran P, Johannesson H. Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nat. Commun. 2017;8:1140. doi: 10.1038/s41467-017-01317-6. PubMed DOI PMC
Galagan JE, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422:859–868. doi: 10.1038/nature01554. PubMed DOI
Rountree, M. R. & Selker, E. U. in Epigenomics (eds Ferguson-Smith, A. C., Greally, J. M. & Martienssen, R. A.) 321–341 (Springer, Dordrecht, 2009).
Galagan JE, Selker EU. RIP: the evolutionary cost of genome defense. Trends Genet. 2004;20:417–423. doi: 10.1016/j.tig.2004.07.007. PubMed DOI
Lewis ZA, et al. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 2009;19:427–437. doi: 10.1101/gr.086231.108. PubMed DOI PMC
Selker EU, et al. The methylated component of the Neurospora crassa genome. Nature. 2003;422:893–897. doi: 10.1038/nature01564. PubMed DOI
Jamieson K, Rountree MR, Lewis ZA, Stajich JE, Selker EU. Regional control of histone H3 lysine 27 methylation in Neurospora. Proc. Natl. Acad. Sci. 2013;110:6027–6032. doi: 10.1073/pnas.1303750110. PubMed DOI PMC
Wang Y, Smith KM, Taylor JW, Freitag M, Stajich JE. Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 (Bethesda) 2015;5:1949–1960. doi: 10.1534/g3.115.017921. PubMed DOI PMC
Villalta CF, Jacobson DJ, Taylor JW. Three new phylogenetic and biological Neurospora species: N. hispaniola, N. metzenbergii and N. perkinsii. Mycologia. 2009;101:777–789. doi: 10.3852/08-219. PubMed DOI
Castellano, D., James, J., Eyre-Walker, A. & Hernandez, R. Nearly neutral evolution across the Drosophila melanogaster genome. Mol. Biol. Evol. 10.1093/molbev/msy164 (2018). PubMed
Lyon MF. Transmission ratio distortion in mice. Annu. Rev. Genet. 2003;37:393–408. doi: 10.1146/annurev.genet.37.110801.143030. PubMed DOI
Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501. doi: 10.1371/journal.pbio.1000501. PubMed DOI PMC
Johnson LJ. The genome strikes back: the evolutionary importance of defence against mobile elements. Evol. Biol. 2007;34:121–129. doi: 10.1007/s11692-007-9012-5. DOI
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. Fungal Biol. Rev. 2015;29:220–229. doi: 10.1016/j.fbr.2015.06.001. PubMed DOI PMC
Lee SI, Kim NS. Transposable elements and genome size variations in plants. Genomics Inform. 2014;12:87–97. doi: 10.5808/GI.2014.12.3.87. PubMed DOI PMC
Gioti A, Mushegian AA, Strandberg R, Stajich JE, Johannesson H. Unidirectional evolutionary transitions in fungal mating systems and the role of transposable elements. Mol. Biol. Evol. 2012;29:3215–3226. doi: 10.1093/molbev/mss132. PubMed DOI
Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet. Res. 1966;8:269–294. doi: 10.1017/S0016672300010156. PubMed DOI
Wright AE, Dean R, Zimmer F, Mank JE. How to make a sex chromosome. Nat. Commun. 2016;7:12087. doi: 10.1038/ncomms12087. PubMed DOI PMC
Badouin H, et al. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae. Genetics. 2015;200:1275–1284. doi: 10.1534/genetics.115.177709. PubMed DOI PMC
Purcell J, Brelsford A, Wurm Y, Perrin N, Chapuisat M. Convergent genetic architecture underlies social organization in ants. Curr. Biol. 2014;24:2728–2732. doi: 10.1016/j.cub.2014.09.071. PubMed DOI
McCluskey K, Wiest A, Plamann M. The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J. Biosci. 2010;35:119–126. doi: 10.1007/s12038-010-0014-6. PubMed DOI
Westergaard M, Mitchell HK. Neurospora V. A synthetic medium favoring sexual reproduction. Am. J. Bot. 1947;34:573–577. doi: 10.1002/j.1537-2197.1947.tb13032.x. DOI
Simpson JT, et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. PubMed DOI PMC
Turner BC, Perkins DD. Strains for studying spore killer elements in four Neurospora species. Fungal Genet. Rep. 1993;40:30. doi: 10.4148/1941-4765.1399. DOI
Yu JH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 2004;41:973–981. doi: 10.1016/j.fgb.2004.08.001. PubMed DOI
Margolin B, Freitag M, Selker E. Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet. Rep. 1997;44:34–36. doi: 10.4148/1941-4765.1281. DOI
Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Trapnell C, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010;28:511–515. doi: 10.1038/nbt.1621. PubMed DOI PMC
Cantarel BL, et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC
Stajich JE, et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 2012;40:D675–D681. doi: 10.1093/nar/gkr918. PubMed DOI PMC
She R, et al. genBlastG: using BLAST searches to build homologous gene models. Bioinformatics. 2011;27:2141–2143. doi: 10.1093/bioinformatics/btr342. PubMed DOI
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Ellison CE, et al. Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma. Genetics. 2011;189:55–69. doi: 10.1534/genetics.111.130690. PubMed DOI PMC
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016;33:1635–1638. doi: 10.1093/molbev/msw046. PubMed DOI PMC
Svedberg, J. et al. Datasets deposited for Svedberg et al. (2018). ‘Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements’. Figshare https://dx.doi.org/10.6084/m9.figshare.c.4202669 (2018) PubMed PMC