Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
G0701062
Medical Research Council - United Kingdom
PubMed
30365308
PubMed Central
PMC6257630
DOI
10.1021/acs.inorgchem.8b02599
Knihovny.cz E-resources
- MeSH
- DNA chemistry metabolism MeSH
- Photosensitizing Agents chemical synthesis chemistry pharmacology radiation effects MeSH
- Humans MeSH
- Ligands MeSH
- Cell Line, Tumor MeSH
- Organoplatinum Compounds chemical synthesis chemistry pharmacology radiation effects MeSH
- Prodrugs chemical synthesis chemistry pharmacology radiation effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology radiation effects MeSH
- Cattle MeSH
- Stereoisomerism MeSH
- Light MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- calf thymus DNA MeSH Browser
- DNA MeSH
- Photosensitizing Agents MeSH
- Ligands MeSH
- Organoplatinum Compounds MeSH
- Prodrugs MeSH
- Antineoplastic Agents MeSH
A series of dinuclear octahedral PtIV complexes trans, trans, trans-[{Pt(N3)2(py)2(OH)(OC(O)CH2CH2C(O)NH)}2R] containing pyridine (py) and bridging dicarboxylate [R = -CH2CH2- (1), trans-1,2-C6H10- (2), p-C6H4- (3), -CH2CH2CH2CH2- (4)] ligands have been synthesized and characterized, including the X-ray crystal structures of complexes 1·2MeOH and 4, the first photoactivatable dinuclear PtIV complexes with azido ligands. The complexes are highly stable in the dark, but upon photoactivation with blue light (420 nm), they release the bridging ligand and mononuclear photoproducts. Upon irradiation with blue light (465 nm), they generate azidyl and hydroxyl radicals, detected using a 5,5-dimethyl-1-pyrroline N-oxide electron paramagnetic resonance spin trap, accompanied by the disappearance of the ligand-to-metal charge-transfer (N3 → Pt) band at ca. 300 nm. The dinuclear complexes are photocytotoxic to human cancer cells (465 nm, 4.8 mW/cm2, 1 h), including A2780 human ovarian and esophageal OE19 cells with IC50 values of 8.8-78.3 μM, whereas cisplatin is inactive under these conditions. Complexes 1, 3, and 4 are notably more photoactive toward cisplatin-resistant ovarian A2780cis compared to A2780 cells. Remarkably, all of the complexes were relatively nontoxic toward normal cells (MRC5 lung fibroblasts), with IC50 values >100 μM, even after irradiation. The introduction of an aromatic bridging ligand (3) significantly enhanced cellular uptake. The populations in the stages of the cell cycle remained unchanged upon treatment with complexes in the dark, while the population of the G2/M phase increased upon irradiation, suggesting that DNA is a target for these photoactivated dinuclear PtIV complexes. Liquid chromatography-mass spectrometry data show that the photodecomposition pathway of the dinuclear complexes results in the release of two molecules of mononuclear platinum(II) species. As a consequence, DNA binding of the dinuclear complexes after photoactivation in cell-free media is, in several respects, qualitatively similar to that of the photoactivated mononuclear complex FM-190. After photoactivation, they were 2-fold more effective in quenching the fluorescence of EtBr bound to DNA, forming DNA interstrand cross-links and unwinding DNA compared to the photoactivated FM-190.
Department of Chemistry University of Warwick Coventry CV4 7AL U K
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 Brno CZ 61265 Czech Republic
School of Pharmacy Institute of Clinical Sciences University of Birmingham Birmingham B15 2TT U K
See more in PubMed
Dolmans D. E.; Fukumura D.; Jain R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. 10.1038/nrc1071. PubMed DOI
Bednarski P. J.; Mackay F. S.; Sadler P. J. Photoactivatable platinum complexes. Anti-Cancer Agents Med. Chem. 2007, 7, 75–93. 10.2174/187152007779314053. PubMed DOI
Bonnet S. Why develop photoactivated chemotherapy?. Dalton Trans. 2018, 47, 10330–10343. 10.1039/C8DT01585F. PubMed DOI
Bjelosevic A.; Pages B. J.; Spare L. K.; Deo K. M.; Ang D. L.; Aldrich-Wright J. R. Exposing “Bright” Metals: Promising Advances in Photoactivated Anticancer Transition Metal Complexes. Curr. Med. Chem. 2018, 25, 478–492. 10.2174/0929867324666170530085123. PubMed DOI
Wong E.; Giandomenico C. M. Current Status of Platinum-Based Antitumor Drugs. Chem. Rev. 1999, 99, 2451–2466. 10.1021/cr980420v. PubMed DOI
Pages B. J.; Ang D. L.; Wright E. P.; Aldrich-Wright J. R. Metal complex interactions with DNA. Dalton Trans. 2015, 44, 3505–3526. 10.1039/C4DT02700K. PubMed DOI
Harris A. L. Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47. 10.1038/nrc704. PubMed DOI
Macquet J. P.; Butour J. L. Platinum-amine compounds: importance of the labile and inert ligands for their pharmacological activities toward L1210 leukemia cells. J. Nat. Cancer Inst. 1983, 70, 899–905. PubMed
Van der Veer J. L.; Peters A. R.; Reedijk J. Reaction products from platinum(IV) amine compounds and 5′-GMP are mainly bis(5′-GMP) platinum (II) amine adducts. J. Inorg. Biochem. 1986, 26, 137–142. 10.1016/0162-0134(86)80006-X. PubMed DOI
Roat R. M.; Reedijk J. Reaction of mer-trichloro (diethylenetriamine)platmum(IV) chloride, (mer-[Pt(dien)Cl3]Cl), with purine nucleosides and nucleotides results in formation of platinum(II) as well as platinum(IV) complexes. J. Inorg. Biochem. 1993, 52, 263–274. 10.1016/0162-0134(93)80030-D. DOI
Mitra K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans. 2016, 45, 19157–19171. 10.1039/C6DT03665A. PubMed DOI
Johnstone T. C.; Suntharalingam K.; Lippard S. J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. 10.1021/acs.chemrev.5b00597. PubMed DOI PMC
Shushakov A. A.; Pozdnyakov I. P.; Grivin V. P.; Plyusnin V. F.; Vasilchenko D. B.; Zadesenets A. V.; Melnikov A. A.; Chekalin S. V.; Glebov E. M. Primary photochemical processes for Pt(IV) diazido complexes prospective in photodynamic therapy of tumors. Dalton Trans. 2017, 46, 9440–9450. 10.1039/C7DT01529A. PubMed DOI
Müller P.; Schröder B.; Parkinson J. A.; Kratochwil N. A.; Coxall R. A.; Parkin A.; Parsons S.; Sadler P. J. Nucleotide cross-linking induced by photoreactions of platinum(IV)-azide complexes. Angew. Chem., Int. Ed. 2003, 42, 335–339. 10.1002/anie.200390110. PubMed DOI
Mackay F. S.; Woods J. A.; Heringová P.; Kašpárková J.; Pizarro A. M.; Moggach S. A.; Parsons S.; Brabec V.; Sadler P. J. A potent cytotoxic photoactivated platinum complex. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20743–20748. 10.1073/pnas.0707742105. PubMed DOI PMC
Westendorf A. F.; Zerzankova L.; Salassa L.; Sadler P. J.; Brabec V.; Bednarski P. J. Influence of pyridine versus piperidine ligands on the chemical, DNA binding and cytotoxic properties of light activated trans, trans, trans-[Pt(N3)2(OH)2(NH3)(L)]. J. Inorg. Biochem. 2011, 105, 652–662. 10.1016/j.jinorgbio.2011.01.003. PubMed DOI
Mackay F. S.; Moggach S. A.; Collins A.; Parsons S.; Sadler P. J. Photoactive trans ammine/amine diazido platinum(IV) complexes. Inorg. Chim. Acta 2009, 362, 811–819. 10.1016/j.ica.2008.02.039. DOI
Zhao Y.; Farrer N. J.; Li H.; Butler J. S.; McQuitty R. J.; Habtemariam A.; Wang F.; Sadler P. J. De Novo Generation of Singlet Oxygen and Ammine Ligands by Photoactivation of a Platinum Anticancer Complex. Angew. Chem., Int. Ed. 2013, 52, 13633–13637. 10.1002/anie.201307505. PubMed DOI PMC
Zhao Y.; Woods J. A.; Farrer N. J.; Robinson K. S.; Pracharova J.; Kasparkova J.; Novakova O.; Li H.; Salassa L.; Pizarro A. M.; Clarkson G. J.; Song L.; Brabec V.; Sadler P. J. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chem. - Eur. J. 2013, 19, 9578–9591. 10.1002/chem.201300374. PubMed DOI PMC
Kasparkova J.; Kostrhunova H.; Novakova O.; Křikavová R.; Vančo J.; Trávníček Z.; Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew. Chem., Int. Ed. 2015, 54, 14478–14482. 10.1002/anie.201506533. PubMed DOI
Farrer N. J.; Woods J. A.; Salassa L.; Zhao Y.; Robinson K. S.; Clarkson G.; Mackay F. S.; Sadler P. J. A Potent Trans-Diimine Platinum Anticancer Complex Photoactivated by Visible Light. Angew. Chem., Int. Ed. 2010, 49, 8905–8908. 10.1002/anie.201003399. PubMed DOI
Pracharova J.; Zerzankova L.; Stepankova J.; Novakova O.; Farrer N. J.; Sadler P. J.; Brabec V.; Kasparkova Interactions of DNA with a new platinum(IV) azide dipyridine complex activated by UVA and visible light: Relationship to toxicity in tumor cells. Chem. Res. Toxicol. 2012, 25, 1099–1111. 10.1021/tx300057y. PubMed DOI
Butler J. S.; Woods J. A.; Farrer N. J.; Newton M. E.; Sadler P. J. Tryptophan Switch for a Photoactivated Platinum Anticancer Complex. J. Am. Chem. Soc. 2012, 134, 16508–16511. 10.1021/ja3074159. PubMed DOI
Gandioso A.; Shaili E.; Massaguer A.; Artigas G.; González-Cantó A.; Woods J. A.; Sadler P. J.; Marchán V. An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem. Commun. 2015, 51, 9169–9172. 10.1039/C5CC03180J. PubMed DOI
Shaili E.; Fernández-Giménez M.; Rodríguez-Astor S.; Gandioso A.; Sandín L.; García-Vélez C.; Massaguer A.; Clarkson G. J.; Woods J. A.; Sadler P. J.; Marchán V. A photoactivatable platinum(IV) anticancer complex conjugated to the RNA ligand Guanidinoneomycin. Chem. - Eur. J. 2015, 21, 18474–18486. 10.1002/chem.201502373. PubMed DOI
Venkatesh V.; Wedge C. J.; Romero-Canelón I.; Habtemariam A.; Sadler P. J. Spin-labelled photo-cytotoxic diazido platinum(IV) anticancer complex. Dalton Trans. 2016, 45, 13034–13037. 10.1039/C6DT01382A. PubMed DOI
Min Y.; Li J.; Liu F.; Yeow E. K. L.; Xing B. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 1012–1016. 10.1002/anie.201308834. PubMed DOI
Venkatesh V.; Mishra N. K.; Romero-Canelón I.; Vernooij R. R.; Shi H.; Coverdale J. P. C.; Habtemariam A.; Verma S.; Sadler P. J. Supramolecular photoactivatable anticancer hydrogels. J. Am. Chem. Soc. 2017, 139, 5656–5659. 10.1021/jacs.7b00186. PubMed DOI
Malina J.; Farrell N. P.; Brabec V. DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes. Inorg. Chem. 2014, 53, 1662–1671. 10.1021/ic402796k. PubMed DOI
Cox J. W.; Berners-Price S.; Davies M. S.; Qu Y.; Farrell N. P. Kinetic Analysis of the Stepwise Formation of a Long-Range DNA Interstrand Cross-link by a Dinuclear Platinum Antitumor Complex: Evidence for Aquated Intermediates and Formation of Both Kinetically and Thermodynamically Controlled Conformers. J. Am. Chem. Soc. 2001, 123, 1316–1326. 10.1021/ja0012772. PubMed DOI
Qu Y.; Scarsdale N. J.; Tran M. C.; Farrell N. P. Cooperative effects in long-range 1,4 DNA-DNA interstrand cross-links formed by polynuclear platinum complexes: an unexpected syn orientation of adenine bases outside the binding sites. J. Biol. Inorg. Chem. 2003, 8, 19–28. 10.1007/s00775-002-0383-x. PubMed DOI
Hegmans A.; Berners-Price S. J.; Davies M. S.; Thomas D.; Humphreys A.; Farrell N. P. Long Range 1,4 and 1,6-Interstrand Cross-Links Formed by a Trinuclear Platinum Complex. Minor Groove Preassociation Affects Kinetics and Mechanism of Cross-Link Formation as Well as Adduct Structure. J. Am. Chem. Soc. 2004, 126, 2166–2180. 10.1021/ja036105u. PubMed DOI
Malina J.; Farrell N. P.; Brabec V. DNA Interstrand Cross-Links of an Antitumor Trinuclear Platinum(II) Complex: Thermodynamic Analysis and Chemical Probing. Chem. - Asian J. 2011, 6, 1566–1574. 10.1002/asia.201000935. PubMed DOI
Gourley C.; Cassidy J.; Edwards C.; Samuel L.; Bisset D.; Camboni G.; Young A.; Boyle D.; Jodrell D. A phase I study of the trinuclear platinum compound, BBR 3464, in combination with protracted venous infusional 5-fluorouracil in patients with advanced cancer. Cancer Chemother. Pharmacol. 2004, 53, 95–101. 10.1007/s00280-003-0721-x. PubMed DOI
Jodrell D. I.; Evans T. R. J.; Steward W.; Cameron D.; Prendiville J.; Aschele C.; Noberasco C.; Lind M.; Carmichael J.; Dobbs N.; Camboni G.; Gatti B.; De Braud F. Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma. Eur. J. Cancer 2004, 40, 1872–1877. 10.1016/j.ejca.2004.04.032. PubMed DOI
Hensing T. A.; Hanna N. H.; Gillenwater H. H.; Gabriella Camboni M.; Allievi C.; Socinski M. A. Phase II study of BBR 3464 as treatment in patients with sensitive or refractory small cell lung cancer. Anti-Cancer Drugs 2006, 17, 697–704. 10.1097/01.cad.0000215054.62942.7f. PubMed DOI
Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. 10.1107/S0021889808042726. DOI
Sheldrick G. M. SHELXT-Integrated space–group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Vichai V.; Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. 10.1038/nprot.2006.179. PubMed DOI
Halliwell B. Oxidative stress and cancer: have we moved forward?. Biochem. J. 2007, 401, 1–11. 10.1042/BJ20061131. PubMed DOI
Muhammad N.; Sadia N.; Zhu C.; Luo C.; Guo Z.; Wang X. Biotin–tagged platinum(IV) complexes as targeted cytostatic agents against breast cancer cells. Chem. Commun. 2017, 53, 9971–9974. 10.1039/C7CC05311H. PubMed DOI
Pracharova J.; Zerzankova L.; Stepankova J.; Novakova O.; Farrer N. J.; Sadler P. J.; Brabec V.; Kasparkova J. Interactions of DNA with a New Platinum(IV) Azide Dipyridine Complex Activated by UVA and Visible Light: Relationship to Toxicity in Tumor Cells. Chem. Res. Toxicol. 2012, 25, 1099–1111. 10.1021/tx300057y. PubMed DOI
Tai H. C.; Brodbeck R.; Kasparkova J.; Farrer N. J.; Brabec V.; Sadler P. J.; Deeth R. J. Combined theoretical and computational study of interstrand DNA guanine–guanine cross-linking by trans-[Pt(pyridine)2] derived from the photoactivated prodrug trans, trans, trans-[Pt(N3)2(OH)2(pyridine)2]. Inorg. Chem. 2012, 51, 6830–6841. 10.1021/ic3005745. PubMed DOI
Brabec V.; Leng M. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5345–534. 10.1073/pnas.90.11.5345. PubMed DOI PMC