The Impact of O-Glycosylation on Cyanidin Interaction with POPC Membranes: Structure-Activity Relationship
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DEC-2017/01/X/NZ9/00908
Narodowe Centrum Nauki
PubMed
30366469
PubMed Central
PMC6278410
DOI
10.3390/molecules23112771
PII: molecules23112771
Knihovny.cz E-zdroje
- Klíčová slova
- anthocyanin, fluorescence dyes, hydrogen peroxide, lipid peroxidation, membrane fluidity, phospholipid membrane, structure-activity relationships,
- MeSH
- anthokyaniny metabolismus MeSH
- fosfatidylcholiny metabolismus MeSH
- glykosylace MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- anthokyaniny MeSH
- cyanidin MeSH Prohlížeč
- fosfatidylcholiny MeSH
- peroxid vodíku MeSH
Cyanidin and its O-glycosides have many important physiological functions in plants and beneficial effects on human health. Their biological activity is not entirely clear and depends on the structure of the molecule, in particular, on the number and type of sugar substituents. Therefore, in this study the detailed structure-activity relationship (SARs) of the anthocyanins/anthocyanidins in relation to their interactions with lipid bilayer was determined. On the basis of their antioxidant activity and the changes induced by them in size and Zeta potential of lipid vesicles, and mobility and order of lipid acyl chains, the impact of the number and type of sugar substituents on the biological activity of the compounds was evaluated. The obtained results have shown, that 3-O-glycosylation changes the interaction of cyanidin with lipid bilayer entirely. The 3-O-glycosides containing a monosaccharide induces greater changes in physical properties of the lipid membrane than those containing disaccharides. The presence of additional sugar significantly reduces glycoside interaction with model lipid membrane. Furthermore, O-glycosylation alters the ability of cyanidin to scavenge free radicals. This alteration depends on the type of free radicals and the sensitivity of the method used for their determination.
Zobrazit více v PubMed
Kong J.M., Chia L.S., Goh N.K., Chia T.F., Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry. 2003;64:923–933. doi: 10.1016/S0031-9422(03)00438-2. PubMed DOI
Takeoka G., Dao L.T. Anthocyanins. In: Hurst W.J., editor. Methods of Analysis for Functional Foods and Nutraceuticals. CRC Taylor & Francis Group; Boca Raton, FL, USA: 2002. pp. 219–241.
Prior R.L., Wu X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 2006;40:1014–1028. doi: 10.1080/10715760600758522. PubMed DOI
Andersen Ø.M., Jordheim M. The anthocyanins. In: Andersen Ø.M., Markham K.R., editors. Flavonoids: Chemistry, Biochemistry and Applications. CRC Taylor & Francis Group; Boca Raton, FL, USA: 2006. pp. 471–551.
Křen V. Chemical biology and biomedicine of glycosylated natural compounds. In: Fraser-Reid B.O., Tatsuta K., Thiem J., editors. Glycoscience: Chemistry and Chemical Biology I–III. Springer; Berlin, Germany: 2001. pp. 2471–2529.
Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002;13:572–584. doi: 10.1016/S0955-2863(02)00208-5. PubMed DOI
Kähkönen M.P., Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003;51:628–633. doi: 10.1021/jf025551i. PubMed DOI
Castañeda-Ovando A., Pacheco-Hernández M., Páez-Hernández M., Rodríguez J.A., Galán-Vidal C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009;113:859–871. doi: 10.1016/j.foodchem.2008.09.001. DOI
Iacobucci G.A., Sweeny J.G. The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron. 1983;39:3005–3038. doi: 10.1016/S0040-4020(01)91542-X. DOI
Borkowski T., Szymusiak H., Gliszczynska-Swigło A., Tyrakowska B. The effect of 3-O-β-glucosylation on structural transformations of anthocyanins. Food Res. Int. 2005;38:1031–1037. doi: 10.1016/j.foodres.2005.02.020. DOI
Nayak B., Berrios J., Powers J.R., Tang J. Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity. J. Agric. Food Chem. 2011;59:11040–11049. doi: 10.1021/jf201923a. PubMed DOI
Landi M., Tattini M., Gould K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot. 2015;119:4–17. doi: 10.1016/j.envexpbot.2015.05.012. DOI
Miguel M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci. 2011;1:7–15.
Galvano F., La Fauci L., Vitaglione P., Fogliano V., Vanella L., Felgines C. Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Ann. Ist. Super. Sanità. 2007;43:382–393. PubMed
Pojer E., Mattivi F., Johnson D., Stockley C.S. The case for anthocyanin consumption to promote human health: A Review. Compr. Rev. Food Sci. Food Saf. 2013;12:483–508. doi: 10.1111/1541-4337.12024. PubMed DOI
Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017;57:1874–1905. doi: 10.1080/10408398.2015.1032400. PubMed DOI
Van der Paal J., Neyts E.C., Verlackt C.C.W., Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016;7:489–498. doi: 10.1039/C5SC02311D. PubMed DOI PMC
Scheidt H.A., Pampel A., Nissler L., Gebhardt R., Huster D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta. 2004;1663:97–107. doi: 10.1016/j.bbamem.2004.02.004. PubMed DOI
Rokic V., Ota A., Sokolovic D., Ulrih N.P. Interaction of cyanidin and cyanidin 3-0-β-glucospyranoside with model lipid membrane. J. Therm. Anal. Calorim. 2017;127:1467–1477. doi: 10.1007/s10973-016-6005-6. DOI
Strugala P., Dudra A., Gabrielska J. Interaction between mimic lipid membrane and acytalted and nonacytalted cyanidin and its bioactivity. J. Agric. Food Chem. 2016;64:7414–7422. doi: 10.1021/acs.jafc.6b03066. PubMed DOI
Parasassi T., Krasnowska E.K., Bagatolli L., Gratton E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 1998;8:365–373. doi: 10.1023/A:1020528716621. DOI
Sanchez S.A., Tricerri M.A., Gunther G., Gratton E. Laurdan Generalized Polarization: From cuvette to microscope. In: Méndez-Vilas A., Díaz J., editors. Modern Research and Educational Topics in Microscopy. Formatex; Badajoz, Spain: 2007. pp. 1007–1014.
Repáková J., Čapková P., Holopainen M.J., Vattulainen I. Distribution, orientation, and dynamics of DPH probes in DPPC bilayer. J. Phys. Chem. B. 2004;108:13438–13448. doi: 10.1021/jp048381g. DOI
Lentz B.R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem. Phys. Lipids. 1993;64:99–116. doi: 10.1016/0009-3084(93)90060-G. PubMed DOI
Heyn M.P. Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS let. 1979;108:359–364. doi: 10.1016/0014-5793(79)80564-5. PubMed DOI
Tsuchiya H. Effects of red wine flavonoid components on biomembranes and cell proliferation. Int. J. Wine Res. 2011;3:9–17. doi: 10.2147/IJWR.S19033. DOI
Tsuchiya H. Structure-dependent membrane interaction of flavonoids associated with their bioactivity. Food Chem. 2010;120:1089–1096. doi: 10.1016/j.foodchem.2009.11.057. DOI
Giusti M.M., Wrolstad R.E. Anthocyanins. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. In: Wrolstad R.E., editor. Current Protocols in Food Analytical Chemistry. John Wiley & Sons; New York, NY, USA: 2001. pp. F1.2.1–F1.2.13.
Ahmadiani N., Robbins R.J., Collins T.M., Giusti M.M. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage. Food Chem. 2015;197:900–906. doi: 10.1016/j.foodchem.2015.11.032. PubMed DOI
Bonarska-Kujawa D., Pruchnik H., Kleszczynska H. Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cell. Mol. Biol. Lett. 2012;17:289–308. doi: 10.2478/s11658-012-0010-y. PubMed DOI PMC
Lehtonen J.Y.A., Adlercreutz H., Kinnunen P.K.J. Binging of daidzein to the liposomes. Biochim. Biophys. Acta. 1996;1285:91–100. doi: 10.1016/S0005-2736(96)00154-X. PubMed DOI
Hendrich A.B., Malon R., Pola A., Shirataki Y., Motohashi N., Michalak K. Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur. J. Pharm. Sci. 2002;16:201–208. doi: 10.1016/S0928-0987(02)00106-9. PubMed DOI
Huh N.W., Porter N.A., McIntosh T.J., Simon S.A. The interaction of polyphenols with bilayers: Conditions for increasing bilayer adhesion. Biophys. J. 1996;71:3261–3277. doi: 10.1016/S0006-3495(96)79519-X. PubMed DOI PMC
Brouillard R., Chassaing S., Isorez G., Kueny-Stotz M., Figueiredo P. The visible flavonoids or anthocyanins: From research to applications. In: Santos-Buelga C., Escribano-Bailon M.T., Lattanzio V., editors. Recent Advances in Polyphenol Research. Volume 2. Blackwell Publishing Ltd.; Oxford, UK: 2010. pp. 1–22.
Bockmann R.A., Hac A., Heimburg T., Grubmuller H. Effect of sodium chloride on a lipid bilayer. Biophys. J. 2003;85:1647–1655. doi: 10.1016/S0006-3495(03)74594-9. PubMed DOI PMC
Makino K., Yamada T., Kimura M., Oka T., Ohshima H., Kondo T. Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys. Chem. 1991;41:175–183. doi: 10.1016/0301-4622(91)80017-L. PubMed DOI
Chibowski E., Szcześ A. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption. 2016;22:755–765. doi: 10.1007/s10450-016-9767-z. DOI
Janosi L., Gorfe A. Simulating POPC and POPC/POPG bilayers: Conserved packing and altered surface reactivity. J. Chem. Theory Comput. 2010;6:3267–3273. doi: 10.1021/ct100381g. PubMed DOI
Cyboran S., Oszmiański J., Kleszczyńska H. Modification of the properties of biological membrane and its protection against oxidation by Actinidia arguta leaf extract. Chem. Biol. Interact. 2014;222:50–59. doi: 10.1016/j.cbi.2014.08.012. PubMed DOI
Parasassi T., De Stasio G., Ravagnan G., Rusch R.M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 1991;60:179–189. doi: 10.1016/S0006-3495(91)82041-0. PubMed DOI PMC
Lakowicz J.R. Fluorescence Polarization in Principles of Fluorescence Spectroscopy. Plenum Press; New York, NY, USA: 2006. pp. 353–382.
Kinosita K., Ikegami A., Kawato S. On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys. J. 1982;37:461–464. doi: 10.1016/S0006-3495(82)84692-4. PubMed DOI PMC
Jahnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc. Natl. Acad. Sci. USA. 1979;76:6361–6365. doi: 10.1073/pnas.76.12.6361. PubMed DOI PMC
Kawato S., Kinosita K., Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977;16:2319–2324. doi: 10.1021/bi00630a002. PubMed DOI
Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys. J. 1980;30:489–506. doi: 10.1016/S0006-3495(80)85109-5. PubMed DOI PMC
Koppel D.E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of Cumulants. J. Chem. Phys. 1972;57:4814–4820. doi: 10.1063/1.1678153. DOI
Hunter R.J. Zeta Potential in Colloid Science. Academic Press; London, UK: 1981. p. 71.
Smoluchowski M.V. Bulletin International de l’Académie des Sciences de Cracovie. Classe des Sciences Mathématiques et Naturelles. [(accessed on 25 September 2018)];1916 :182. Available online: https://www.biodiversitylibrary.org/bibliography/13192#/summary.