Evolution favours aging in populations with assortative mating and in sexually dimorphic populations
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30375446
PubMed Central
PMC6207771
DOI
10.1038/s41598-018-34391-x
PII: 10.1038/s41598-018-34391-x
Knihovny.cz E-resources
- MeSH
- Biological Evolution * MeSH
- Phenotype MeSH
- Fertility genetics physiology MeSH
- Sex Characteristics MeSH
- Genetics, Population MeSH
- Reproduction genetics MeSH
- Mating Preference, Animal physiology MeSH
- Aging genetics physiology MeSH
- Models, Theoretical MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Since aging seems omnipresent, many authors regard it as an inevitable consequence of the laws of physics. However, recent research has conclusively shown that some organisms do not age, or at least do not age on a scale comparable with other aging organisms. This begets the question why aging evolved in some organisms yet not in others. Here we present a simulation model of competition between aging and non-aging individuals in a sexually reproducing population. We find that the aging individuals may outcompete the non-aging ones if they have a sufficiently but not excessively higher initial fecundity or if individuals mate assortatively with respect to their own phenotype. Furthermore, the aging phenotype outcompetes the non-aging one or resists dominance of the latter for a longer period in populations composed of genuine males and females compared to populations of simultaneous hermaphrodites. Finally, whereas sterilizing parasites promote non-aging, the effect of mortality-enhancing parasites is to enable longer persistence of the aging phenotype relative to when parasites are absent. Since the aging individuals replace the non-aging ones in diverse scenarios commonly found in nature, our study provides important insights into why aging has evolved in most, but not all organisms.
See more in PubMed
Kirkwood TBL, Austad SN. Why do we age? Nature. 2000;408:233–238. doi: 10.1038/35041682. PubMed DOI
Martínez DE. Mortality Patterns Suggest Lack of Senescence in Hydra. Exp. Gerontol. 1998;33:217–225. doi: 10.1016/S0531-5565(97)00113-7. PubMed DOI
Schaible R, et al. Constant mortality and fertility over age in Hydra. Proc. Natl. Acad. Sci. 2015;112:15701–15706. PubMed PMC
Jones OR, et al. Diversity of ageing across the tree of life. Nature. 2014;505:169–173. doi: 10.1038/nature12789. PubMed DOI PMC
Jones OR, Vaupel JW. Senescence is not inevitable. Biogerontology. 2017;18:965–971. doi: 10.1007/s10522-017-9727-3. PubMed DOI PMC
Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. PubMed PMC
Weismann, A., Poulton, E. B., Schönland, S. & Shipley, A. E. Essays upon heredity and kindred biological problems, by Dr. August Weismann. Ed. by Edward B. Poulton, Selmar Schönland, and Arthur E. Shipley. Authorised translation. (Clarendon Press, 1891).
Medawar, P. B. An Unsolved Problem of Biology: An Inaugural Lecture Delivered at University College, London, 6 December, 1951. (H.K. Lewis and Company, 1952).
Williams GC. Pleiotropy, Natural Selection, and the Evolution of Senescence. Evolution. 1957;11:398–411. doi: 10.1111/j.1558-5646.1957.tb02911.x. DOI
Kirkwood TB. Evolution of ageing. Nature. 1977;270:301–304. doi: 10.1038/270301a0. PubMed DOI
Kirkwood TBL, Holliday R. The Evolution of Ageing and Longevity. Proc. R. Soc. Lond. B Biol. Sci. 1979;205:531–546. doi: 10.1098/rspb.1979.0083. PubMed DOI
Kirkwood TBL, Melov S. On the Programmed/Non-Programmed Nature of Ageing within the Life History. Curr. Biol. 2011;21:R701–R707. doi: 10.1016/j.cub.2011.07.020. PubMed DOI
Longo VD, Mitteldorf J, Skulachev VP. Programmed and altruistic ageing. Nat. Rev. Genet. 2005;6:866–872. doi: 10.1038/nrg1706. PubMed DOI
Mitteldorf JJ. Adaptive aging in the context of evolutionary theory. Biochem. Biokhimiia. 2012;77:716–725. doi: 10.1134/S0006297912070036. PubMed DOI
Mitteldorf J, Martins ACR. Programmed Life Span in the Context of Evolvability. Am. Nat. 2014;184:289–302. doi: 10.1086/677387. PubMed DOI
Skulachev VP. What is ‘phenoptosis’ and how to fight it? Biochem. Biokhimiia. 2012;77:689–706. doi: 10.1134/S0006297912070012. PubMed DOI
Libertini G. An adaptive theory of increasing mortality with increasing chronological age in populations in the wild. J. Theor. Biol. 1988;132:145–162. doi: 10.1016/S0022-5193(88)80153-X. PubMed DOI
Bowles JT. The evolution of aging: a new approach to an old problem of biology. Med. Hypotheses. 1998;51:179–221. doi: 10.1016/S0306-9877(98)90079-2. PubMed DOI
Bredesen DE. The non-existent aging program: how does it work? Aging Cell. 2004;3:255–259. doi: 10.1111/j.1474-9728.2004.00121.x. PubMed DOI
Prinzinger R. Programmed ageing: the theory of maximal metabolic scope. EMBO Rep. 2005;6:S14–S19. doi: 10.1038/sj.embor.7400425. PubMed DOI PMC
Mitteldorf J, Goodnight C. Post-reproductive life span and demographic stability. Oikos. 2012;121:1370–1378. doi: 10.1111/j.1600-0706.2012.19995.x. PubMed DOI
Mitteldorf J. Chaotic population dynamics and the evolution of ageing. Evol. Ecol. Res. 2006;8:561–574.
Travis JMJ. The Evolution of Programmed Death in a Spatially Structured Population. J. Gerontol. A. Biol. Sci. Med. Sci. 2004;59:B301–B305. doi: 10.1093/gerona/59.4.B301. PubMed DOI
Mitteldorf J, Pepper J. Senescence as an adaptation to limit the spread of disease. J. Theor. Biol. 2009;260:186–195. doi: 10.1016/j.jtbi.2009.05.013. PubMed DOI
Martins ACR. Change and Aging Senescence as an Adaptation. Plos One. 2011;6:e24328. doi: 10.1371/journal.pone.0024328. PubMed DOI PMC
Werfel J, Ingber DE, Bar-Yam Y. Programed Death is Favored by Natural Selection in Spatial Systems. Phys. Rev. Lett. 2015;114:238103. doi: 10.1103/PhysRevLett.114.238103. PubMed DOI
Kowald A, Kirkwood TBL. Can aging be programmed? A critical literature review. Aging Cell. 2016;15:986–998. doi: 10.1111/acel.12510. PubMed DOI PMC
Lenart P, Bienertová-Vašků J. Keeping up with the Red Queen: the pace of aging as an adaptation. Biogerontology. 2017;18:693–709. doi: 10.1007/s10522-016-9674-4. PubMed DOI
Howard RS, Lively CM. Parasitism, mutation accumulation and the maintenance of sex. Nature. 1994;367:554–557. doi: 10.1038/367554a0. PubMed DOI
Lively CM, Howard RS. Selection by parasites for clonal diversity and mixed mating. Phil Trans R Soc Lond B. 1994;346:271–281. doi: 10.1098/rstb.1994.0144. PubMed DOI
Howard RS, Lively CM. The Ratchet and the Red Queen: the maintenance of sex in parasites. J. Evol. Biol. 2002;15:648–656. doi: 10.1046/j.1420-9101.2002.00415.x. DOI
Howard RS, Lively CM. Opposites attract? Mate choice for parasite evasion and the evolutionary stability of sex. J. Evol. Biol. 2003;16:681–689. doi: 10.1046/j.1420-9101.2003.00571.x. PubMed DOI
Liochev SI. Which Is the Most Significant Cause of Aging? Antioxidants. 2015;4:793–810. doi: 10.3390/antiox4040793. PubMed DOI PMC
Holliday R. The multiple and irreversible causes of aging. J. Gerontol. A. Biol. Sci. Med. Sci. 2004;59:B568–572. doi: 10.1093/gerona/59.6.B568. PubMed DOI
White RR, et al. Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing. Nat. Commun. 2015;6:6790. doi: 10.1038/ncomms7790. PubMed DOI PMC
White RR, Vijg J. Do DNA Double-Strand Breaks Drive Aging? Mol. Cell. 2016;63:729–738. doi: 10.1016/j.molcel.2016.08.004. PubMed DOI PMC
Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–1198. doi: 10.1126/science.aab3389. PubMed DOI
Tomaru U, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 2012;180:963–972. doi: 10.1016/j.ajpath.2011.11.012. PubMed DOI
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Agrawal A, Lively CM. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol. Ecol. Res. 2002;4:91–107.
Dybdahl MF, Jenkins CE, Nuismer SL. Identifying the Molecular Basis of Host-Parasite Coevolution: Merging Models and Mechanisms. Am. Nat. 2014;184:1–13. doi: 10.1086/676591. PubMed DOI
Borgia G, Blick J. Sexual competition and the evolution of hermaphroditism. J. Theor. Biol. 1981;89:523–532. doi: 10.1016/0022-5193(81)90366-0. PubMed DOI
Schumer M, et al. Assortative mating and persistent reproductive isolation in hybrids. Proc. Natl. Acad. Sci. 2017;114:10936–10941. doi: 10.1073/pnas.1711238114. PubMed DOI PMC
Kirchner JW, Roy BA. The Evolutionary Advantages of Dying Young: Epidemiological Implications of Longevity in Metapopulations. Am. Nat. 1999;154:140–159. doi: 10.1086/303232. PubMed DOI
Predation has small, short-term, and in certain conditions random effects on the evolution of aging