Hexabromocyclododecane: concentrations and isomer profiles from sources to environmental sinks
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
LO1214
Czech Ministry of Education, Youth and Sports
LM2015051
RECETOX Research Infrastructure
CZ.02.1.01/0.0/0.0/16_013/0001761
RECETOX Research Infrastructure
PubMed
30377961
DOI
10.1007/s11356-018-3381-4
PII: 10.1007/s11356-018-3381-4
Knihovny.cz E-resources
- Keywords
- Atmospheric transport, Consumer products, Flame retardants, HBCD, Isomer profiles, Sources,
- MeSH
- Hydrocarbons, Brominated analysis chemistry MeSH
- Isomerism MeSH
- Environmental Pollutants analysis chemistry MeSH
- Environmental Monitoring methods MeSH
- Soil chemistry MeSH
- Flame Retardants analysis MeSH
- Consumer Product Safety MeSH
- Air analysis MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Hydrocarbons, Brominated MeSH
- hexabromocyclododecane MeSH Browser
- Environmental Pollutants MeSH
- Soil MeSH
- Flame Retardants MeSH
Concentrations and isomer compositions of hexabromocyclododecane (HBCD) were measured in six matrices in the Czech Republic (HBCD technical mixture; consumer products; indoor and outdoor air at industrial, urban and background locations; soils; and sediments) to provide insight into changes in concentrations and isomer profiles between environmental sources and environmental sinks. A distinct gradient of air concentrations was observed, from 1600 ng/m3 in the industrial area to < 10 pg/m3 in urban and background air. Isomer profiles also showed a distinct gradient in air, from 95% γ-HBCD in industrial air to 40% γ-HBCD in background air, suggesting the influence of differential atmospheric transport and phototransformation of γ- to α-HBCD. Concentrations and isomer compositions in consumer products were highly variable and indicated differences between products with intentional addition of HBCD as a flame retardant versus those with HBCD as an impurity, e.g., from recycled plastic. Understanding the isomer-specific environmental distributions and processes remains important for risk assessment and toxicology, considering the continued use of HBCD and the isomer-specific differences in uptake, metabolism, and toxicity, and further, demonstrates the utility of isomer profiles to better understand environmental processes of HBCDs.
See more in PubMed
Sci Total Environ. 2012 Dec 15;441:182-93 PubMed
Environ Pollut. 2006 Nov;144(1):238-47 PubMed
Environ Sci Process Impacts. 2014 Mar;16(3):433-44 PubMed
Chemosphere. 2016 May;151:225-33 PubMed
Environ Pollut. 2012 Jul;166:157-66 PubMed
Chemosphere. 2006 Jun;64(2):311-7 PubMed
Environ Sci Technol. 2008 Sep 15;42(18):6855-61 PubMed
Sci Total Environ. 2015 Jun 15;518-519:328-36 PubMed
Chemosphere. 2015 Aug;132:24-31 PubMed
Environ Int. 2014 Sep;70:1-8 PubMed
Sci Total Environ. 2009 Jul 15;407(15):4387-96 PubMed
Chemosphere. 2013 Feb;90(5):1610-6 PubMed
Chemosphere. 2012 Oct;89(4):416-9 PubMed
Environ Health Perspect. 2004 Jan;112(1):9-17 PubMed
Chemosphere. 2016 Feb;144:1391-7 PubMed
Environ Sci Technol. 2014 Nov 4;48(21):12586-94 PubMed
Environ Sci Technol. 2007 Aug 1;41(15):5210-6 PubMed
Environ Sci Technol. 2009 Dec 15;43(24):9077-83 PubMed
Environ Sci Technol. 2010 Jul 15;44(14):5490-5 PubMed
Environ Sci Technol. 2011 Oct 15;45(20):8613-23 PubMed
Toxicol Sci. 2006 Dec;94(2):281-92 PubMed
Chemosphere. 2015 Nov;138:777-83 PubMed
Environ Int. 2009 Apr;35(3):573-9 PubMed
Chemosphere. 2014 Sep;110:111-9 PubMed
Environ Sci Pollut Res Int. 2015 Sep;22(18):14050-66 PubMed
Environ Sci Technol. 2005 Oct 15;39(20):7794-802 PubMed
Sci Total Environ. 2018 May 15;624:1213-1220 PubMed
Environ Int. 2017 Aug;105:95-104 PubMed
Chemosphere. 2005 Sep;61(1):65-73 PubMed
Environ Pollut. 2016 Nov;218:392-401 PubMed
Toxicol In Vitro. 2008 Sep;22(6):1520-7 PubMed
Environ Sci Technol. 2009 Jun 15;43(12):4314-9 PubMed
Environ Pollut. 2015 Jan;196:284-91 PubMed
Environ Sci Technol. 2008 May 1;42(9):3428-33 PubMed
Sci Total Environ. 2014 May 15;481:47-54 PubMed
Int J Hyg Environ Health. 2016 Jan;219(1):1-23 PubMed
Chemosphere. 2011 Jan;82(5):725-31 PubMed
Environ Sci Technol. 2006 Sep 1;40(17):5395-401 PubMed
Chemosphere. 2011 Feb;82(9):1240-5 PubMed
Sci Total Environ. 2016 Jan 15;542(Pt A):427-34 PubMed
Environ Health Perspect. 2009 Nov;117(11):1707-12 PubMed
Environ Pollut. 2012 Jun;165:140-6 PubMed
Environ Sci Technol. 2007 Jul 1;41(13):4561-7 PubMed
Chemosphere. 2013 Mar;90(9):2365-71 PubMed
Environ Sci Technol. 2004 Apr 15;38(8):2298-303 PubMed
Environ Sci Technol. 2006 Jun 15;40(12):3679-88 PubMed
Chemosphere. 2017 Feb;168:457-466 PubMed
Environ Sci Process Impacts. 2014 Nov;16(11):2617-26 PubMed
Environ Int. 2011 Feb;37(2):532-56 PubMed
Anal Bioanal Chem. 2015 Sep;407(22):6759-69 PubMed
Environ Sci Technol. 2011 Mar 15;45(6):2093-9 PubMed
Chemosphere. 2010 Jun;80(2):150-6 PubMed
Environ Pollut. 2015 Apr;199:26-34 PubMed
Talanta. 2013 Dec 15;117:318-25 PubMed
Chemosphere. 2016 May;150:472-478 PubMed
Toxicol In Vitro. 2016 Apr;32:212-9 PubMed
Environ Sci Technol. 2016 Aug 2;50(15):8263-73 PubMed
Environ Sci Pollut Res Int. 2015 Nov;22(21):16781-90 PubMed
Aquat Toxicol. 2012 May 15;112-113:1-10 PubMed
Chemosphere. 2004 Jan;54(1):9-21 PubMed
Environ Int. 2014 Apr;65:147-58 PubMed
J Environ Monit. 2007 Jun;9(6):557-63 PubMed
Chemosphere. 2002 Feb;46(5):583-624 PubMed
Rapid Commun Mass Spectrom. 2005;19(19):2819-26 PubMed