An effective "three-in-one" screening assay for testing drug and nanoparticle toxicity in human endothelial cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30379903
PubMed Central
PMC6209339
DOI
10.1371/journal.pone.0206557
PII: PONE-D-18-22623
Knihovny.cz E-zdroje
- MeSH
- apoptóza účinky léků MeSH
- biotest MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endoteliální buňky účinky léků MeSH
- lidé MeSH
- nanočástice aplikace a dávkování MeSH
- preklinické hodnocení léčiv metody MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Evaluating nanoparticle (NP) toxicity in human cell systems is a fundamental requirement for future NP biomedical applications. In this study, we have designed a screening assay for assessing different types of cell death induced by NPs in human umbilical vein endothelial cell (HUVEC) culture. This assay consists of WST-8, LDH and Hoechst 33342 staining, all performed in one well, which enables an evaluation of cell viability, necrosis and apoptosis, respectively, in the same cell sample. The 96-well format and automated processing of fluorescent images enhances the assay rapidity and reproducibility. After testing the assay functionality with agents that induced different types of cell death, we investigated the endothelial toxicity of superparamagnetic iron oxide nanoparticles (SPIONs, 8 nm), silica nanoparticles (SiNPs, 7-14 nm) and carboxylated multiwall carbon nanotubes (CNTCOOHs, 60 nm). Our results indicated that all the tested NP types induced decreases in cell viability after 24 hours at a concentration of 100 μg/ml. SPIONs caused the lowest toxicity in HUVECs. By contrast, SiNPs induced pronounced necrosis and apoptosis. A time course experiment showed the gradual toxic effect of all the tested NPs. CNTCOOHs inhibited tetrazolium derivatives at 100 μg/ml, causing false negative results from the WST-8 and LDH assay. In summary, our data demonstrate that the presented "three-in-one" screening assay is capable of evaluating NP toxicity effectively and reliably. Due to its simultaneous utilization of two different methods to assess cell viability, this assay is also capable of revealing, if NPs interfere with tetrazolium salts.
Zobrazit více v PubMed
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. 10.1038/nrc.2016.108 PubMed DOI PMC
Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine. 2012;8 Suppl 1:S51–8. 10.1016/j.nano.2012.05.007 . PubMed DOI
Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, et al. Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G371–83. 10.1152/ajpgi.00466.2010 ; PubMed Central PMCID: PMCPMC3064120. PubMed DOI PMC
Misra R, Upadhyay M, Mohanty S. Design considerations for chemotherapeutic drug nanocarriers. Pharm Anal Acta. 2014;5:279.
Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci. 2006;27(1):27–36. 10.1016/j.ejps.2005.08.002 . PubMed DOI
Nichols JW, Bae YH. Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 2012;7(6):606–18. 10.1016/j.nantod.2012.10.010 ; PubMed Central PMCID: PMCPMC3519442. PubMed DOI PMC
Etrych T, Kovar L, Strohalm J, Chytil P, Rihova B, Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J Control Release. 2011;154(3):241–8. 10.1016/j.jconrel.2011.06.015 . PubMed DOI
Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Advances in Condensed Matter Physics. 2015;2015.
Siafaka PI, Ustundag Okur N, Karavas E, Bikiaris DN. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int J Mol Sci. 2016;17(9). 10.3390/ijms17091440 ; PubMed Central PMCID: PMCPMC5037719. PubMed DOI PMC
Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55. 10.1016/j.addr.2006.09.009 . PubMed DOI
Bagwe RP, Hilliard LR, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir. 2006;22(9):4357–62. 10.1021/la052797j ; PubMed Central PMCID: PMCPMC2517131. PubMed DOI PMC
Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle based drugs and drug delivery systems? Expert opinion on drug metabolism & toxicology. 2012;8(1):47–69. 10.1517/17425255.2012.637916 PMC3245366. PubMed DOI PMC
Grela E, Ząbek A, Grabowiecka A. Interferences in the Optimization of the MTT Assay for Viability Estimation of Proteus mirabilis. Avicenna journal of medical biotechnology. 2015;7(4):159 PubMed PMC
Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 2011;6(5):929–41. 10.2217/nnm.11.77 PubMed DOI PMC
Takhar P, Mahant S. In vitro methods for nanotoxicity assessment: advantages and applications. Arch Appl Sci Res. 2011;3(2):389–403.
Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS nano. 2014;8(3):2118–33. 10.1021/nn404871p PubMed DOI PMC
Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature protocols. 2008;3(7):1125–31. 10.1038/nprot.2008.75 PubMed DOI
Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual and automated methods. Mammalian cell viability: methods and protocols. 2011:7–12. PubMed
Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Analytical Communications. 1999;36(2):47–50. 10.1039/A809656B DOI
Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52. 10.1016/S1387-2656(05)11004-7 . PubMed DOI
Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death And Differentiation. 2009;17:922 10.1038/cdd.2009.184 PubMed DOI
Kura AU, Fakurazi S, Hussein MZ, Arulselvan P. Nanotechnology in drug delivery: the need for more cell culture based studies in screening. Chem Cent J. 2014;8:46 10.1186/1752-153X-8-46 ; PubMed Central PMCID: PMCPMC4108003. PubMed DOI PMC
Orecna M, De Paoli SH, Janouskova O, Tegegn TZ, Filipova M, Bonevich JE, et al. Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles. Nanomedicine: Nanotechnology, Biology and Medicine. 2014;10(5):e939–e48. 10.1016/j.nano.2014.02.001. PubMed DOI
Finney DJ. Probit Analysis Cambridge U. Cambridge, UK: 1971.
Alpha Raj M. Calculating LD50/LC50 using Probit Analysis in Excel. 2016 July [cited 23 July 2018]. In: Blogger [Internet]. Available from: probitanalysis.blogspot.cz.
Jeong S-H, Lee O-J, Lee K-H, Oh SH, Park C-G. Preparation of aligned carbon nanotubes with prescribed dimensions: template synthesis and sonication cutting approach. Chemistry of materials. 2002;14(4):1859–62.
Riddick TM. Control of colloid stability through zeta potential. Blood. 1968;10(1).
Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomedicine. 2011;6:2821–35. 10.2147/IJN.S25071 ; PubMed Central PMCID: PMCPMC3224709. PubMed DOI PMC
Wu Z, Mitra S. Length reduction of multi-walled carbon nanotubes via high energy ultrasonication and its effect on their dispersibility. Journal of Nanoparticle Research. 2014;16(8):2563 10.1007/s11051-014-2563-3 DOI
Potapova IA, Cohen IS, Doronin SV. Apoptotic endothelial cells demonstrate increased adhesiveness for human mesenchymal stem cells. J Cell Physiol. 2009;219(1):23–30. 10.1002/jcp.21645 ; PubMed Central PMCID: PMCPMC2743250. PubMed DOI PMC
Simenc J, Lipnik-Stangelj M. Staurosporine induces different cell death forms in cultured rat astrocytes. Radiol Oncol. 2012;46(4):312–20. 10.2478/v10019-012-0036-9 ; PubMed Central PMCID: PMCPMC3572888. PubMed DOI PMC
Simak J, Holada K, Vostal JG. Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol. 2002;3:11 10.1186/1471-2121-3-11 ; PubMed Central PMCID: PMCPMC116580. PubMed DOI PMC
McKeague AL, Wilson DJ, Nelson J. Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines. Br J Cancer. 2003;88(1):125–31. 10.1038/sj.bjc.6600675 ; PubMed Central PMCID: PMCPMC2376787. PubMed DOI PMC
Kendig DM, Tarloff JB. Inactivation of lactate dehydrogenase by several chemicals: implications for in vitro toxicology studies. Toxicol In Vitro. 2007;21(1):125–32. 10.1016/j.tiv.2006.08.004 ; PubMed Central PMCID: PMCPMC1861824. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of Image Analysis. Nat. Methods 9. 2012;9(7):671–675. 10.1038/nmeth.2089 ; PubMed Central PMCID: PMCPMC5554542. PubMed DOI PMC
Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN. In Vitro Morphological Assessment of Apoptosis Induced by Antiproliferative Constituents from the Rhizomes of Curcuma zedoaria. Evid Based Complement Alternat Med. 2013;2013:257108 10.1155/2013/257108 ; PubMed Central PMCID: PMCPMC3671673. PubMed DOI PMC
Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, et al. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. Journal of Nanobiotechnology. 2017;15(1):48 10.1186/s12951-017-0281-6 PubMed DOI PMC
Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder A, Fazlollahi F, et al. Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives. 2013;121(6):683–90. 10.1289/ehp.1306561 PMC3672931. PubMed DOI PMC
Śliwka L, Wiktorska K, Suchocki P, Milczarek M, Mielczarek S, Lubelska K, et al. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS ONE. 2016;11(5):e0155772 10.1371/journal.pone.0155772 PMC4873276. PubMed DOI PMC
Jo HY, Kim Y, Park HW, Moon HE, Bae S, Kim J, et al. The Unreliability of MTT Assay in the Cytotoxic Test of Primary Cultured Glioblastoma Cells. Experimental Neurobiology. 2015;24(3):235–45. 10.5607/en.2015.24.3.235 PMC4580751. PubMed DOI PMC
Zhivotosky B, Orrenius S. Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Current protocols in cell biology/editorial board, Juan S Bonifacino[et al]. 2001:Unit-18. PubMed
Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P. The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ. 2003;10(8):889–98. 10.1038/sj.cdd.4401249 PubMed DOI
Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine. 2008;3(3):311–21. ; PubMed Central PMCID: PMCPMC2626938. PubMed PMC
Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55. 10.4155/tde.15.56 . PubMed DOI
Zhang Q, Zhao H, Li D, Liu L, Du S. A surface-grafted ligand functionalization strategy for coordinate binding of doxorubicin at surface of PEGylated mesoporous silica nanoparticles: Toward pH-responsive drug delivery. Colloids Surf B Biointerfaces. 2016;149:138–45. 10.1016/j.colsurfb.2016.10.018 . PubMed DOI
de Oliveira LF, Bouchmella K, Goncalves Kde A, Bettini J, Kobarg J, Cardoso MB. Functionalized Silica Nanoparticles As an Alternative Platform for Targeted Drug-Delivery of Water Insoluble Drugs. Langmuir. 2016;32(13):3217–25. 10.1021/acs.langmuir.6b00214 . PubMed DOI
Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011;6:2963–79. 10.2147/IJN.S16923 ; PubMed Central PMCID: PMCPMC3230565. PubMed DOI PMC
Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, et al. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J Control Release. 2014;173:59–66. 10.1016/j.jconrel.2013.10.039 . PubMed DOI
Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6(6):1261–8. 10.1021/nl060177c . PubMed DOI
Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov. 2011;10(3):221–37. 10.1038/nrd3373 . PubMed DOI
Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86(7):1123–36. 10.1007/s00204-012-0837-z . PubMed DOI
Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, et al. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9 Suppl 1:13–24. 10.3109/17435390.2013.829590 . PubMed DOI
Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon. 2007;45(7):1425–32. 10.1016/j.carbon.2007.03.033. DOI
Guldi DM, Rahman GM, Zerbetto F, Prato M. Carbon nanotubes in electron donor-acceptor nanocomposites. Acc Chem Res. 2005;38(11):871–8. 10.1021/ar040238i . PubMed DOI
Sanfins E, Dairou J, Hussain S, Busi F, Chaffotte AF, Rodrigues-Lima F, et al. Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation of arylamine N-acetyltransferase enzymes. ACS Nano. 2011;5(6):4504–11. 10.1021/nn103534d . PubMed DOI