Contrasting evolutionary history, anthropogenic declines and genetic contact in the northern and southern white rhinoceros (Ceratotherium simum)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
30404873
PubMed Central
PMC6235034
DOI
10.1098/rspb.2018.1567
PII: rspb.2018.1567
Knihovny.cz E-zdroje
- Klíčová slova
- anthropogenic declines, conservation, demographic history, secondary contact, white rhinoceros,
- MeSH
- biologická evoluce * MeSH
- druhová specificita MeSH
- genetická variace * MeSH
- Perissodactyla genetika fyziologie MeSH
- populační dynamika MeSH
- rozšíření zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika MeSH
The white rhinoceros (Ceratotherium simum) has a discontinuous African distribution, which is limited by the extent of sub-Saharan grasslands. The southern population (SWR) declined to its lowest number around the turn of the nineteenth century, but recovered to become the world's most numerous rhinoceros. In contrast, the northern population (NWR) was common during much of the twentieth century, declining rapidly since the 1970s, and now only two post-reproductive individuals remain. Despite this species's conservation status, it lacks a genetic assessment of its demographic history. We therefore sampled 232 individuals from extant and museum sources and analysed ten microsatellite loci and the mtDNA control region. Both marker types reliably partitioned the species into SWR and NWR, with moderate nuclear genetic diversity and only three mtDNA haplotypes for the species, including historical samples. We detected ancient interglacial demographic declines in both populations. Both populations may also have been affected by recent declines associated with the colonial expansion for the SWR, and with the much earlier Bantu migrations for the NWR. Finally, we detected post-divergence secondary contact between NWR and SWR, possibly occurring as recently as the last glacial maximum. These results suggest the species was subjected to regular periods of fragmentation and low genetic diversity, which may have been replenished upon secondary contact during glacial periods. The species's current situation thus reflects prehistoric declines that were exacerbated by anthropogenic pressure associated with the rise of late Holocene technological advancement in Africa. Importantly, secondary contact suggests a potentially positive outcome for a hybrid rescue conservation strategy, although further genome-wide data are desirable to corroborate these results.
Department of Zoology University of Venda University Road Thohoyandou 0950 Republic of South Africa
Leibniz Institut for Zoo and Wildlife Research Alfred Kowalke Straße 17 10315 Berlin Germany
Sustainable Places Research Institute Cardiff University Cardiff CF10 3BA UK
Wildlife Conservation Society 2300 Southern Blvd 10460 Bronx USA
Zoo Dvůr Králové Štefánikova 1029 Dvůr Králové nad Labem 54401 Czech Republic
Zobrazit více v PubMed
Rookmaaker K, Antoine PO. 2012. New maps representing the historical and recent distribution of the African species of rhinoceros: Diceros bicornis, Ceratotherium simum and Ceratotherium cottoni. Pachyderm 52, 91–96.
Player IC, Feely JM. 1960. A preliminary report on the square-lipped rhinoceros Ceratotherium simum simum. Lammergeyer 1, 3–23.
Vaughan-Kirby F. 1920. The white rhinoceros, with special reference to its habits in Zululand. Ann. Durban Mus. 2, 223–242.
Brooks S. 2006. Human discourses, animal geographies: imagining Umfolozi's white rhinos. Curr. Writ., Durban 18, 6–27. (doi:10.13929x.2006.9678230)
Ferreira SM, Greaver C, Knight GA, Knight MH, Smit IP, Pienaar D. 2015. Disruption of rhino demography by poachers may lead to population declines in Kruger National Park, South Africa. PLoS ONE 10, e0127783 (10.1371/journal.pone.0127783) PubMed DOI PMC
Roosevelt T, Heller E. 1914. Life histories of African game animals, vol. 2, pp. 420–798. New York: NY: Charles Scribner's Sons.
Pitman CRS. 1931. Hobnobbing with the white rhinoceros. Asia 31, 446–451.
Emslie R, Brooks M. 1999. African rhino: status survey and conservation action plan. Gland, Switzerland: IUCN.
Edroma EL. 1982. White rhino extinct in Uganda. Oryx 16, 352–355. (10.1017/S0030605300017841) DOI
Hillman-Smith K, ma Oyisenzoo M, Smith F. 1986. A last chance to save the northern white rhino? Oryx 20, 20–26. (10.1017/S0030605300025862) DOI
Saragusty J, et al. 2016. Rewinding the process of mammalian extinction. Zoo Biol. 35, 280–292. (10.1002/zoo.21284) PubMed DOI
Groves CP, Fernando P, Robovský J. 2010. The sixth rhino: a taxonomic re-assessment of the critically endangered northern white rhinoceros. PLoS ONE 5, e9703 (10.1371/journal.pone.0009703) PubMed DOI PMC
Cinková I, Policht R. 2014. Contact calls of the northern and southern white rhinoceros allow for individual and species identification. PLoS ONE 9, e98475 (10.1371/journal.pone.0098475) PubMed DOI PMC
Harley EH, de Waal M, Murray S, O'Ryan C. 2016. Comparison of whole mitochondrial genome sequences of northern and southern white rhinoceroses (Ceratotherium simum): the conservation consequences of species definitions. Conserv. Genet. 17, 1285–1291. (10.1007/s10592-016-0861-2) DOI
Groves CP. 1975. Taxonomic notes on the white rhinoceros Ceratotherium simum (Burchell, 1817). Saugetierkd. Mitt. 23, 200–212.
Geraads D. 2005. Pliocene Rhinocerotidae (Mammalia) from Hadar and Dikika (lower Awash, Ethiopia), and a revision of the origin of modern African rhinos. J. Vertebr. Paleontol. 25, 451–461. (10.1671/0272-4634(2005)025%5B0451:PRMFHA%5D2.0.CO;2) DOI
Geraads D. 2010. Rhinocerotidae. In Cenozoic mammals of Africa (eds Werdelin L, Sanders WJ), pp. 669–683. Berkeley, CA: University of California Press.
Kuhner MK, Yamato J, Felsenstein J. 1998. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149, 429–434. PubMed PMC
Harley EH, Baumgarten I, Cunningham J, O'Ryan C. 2005. Genetic variation and population structure in remnant populations of black rhinoceros, Diceros bicornis, in Africa. Mol. Ecol. 14, 2981–2990. (10.1111/j.1365-294X.2005.02660.x) PubMed DOI
Kotzé A, Dalton D, du Toit R, Anderson N, Moodley Y. 2014. Genetic structure of the black rhinoceros (Diceros bicornis) in south-eastern Africa. Conserv. Genet. 15, 1479–1489. (10.1007/s10592-014-0632-x) DOI
Moodley Y, et al. 2017. Extinctions, genetic erosion and conservation options for the black rhinoceros (Diceros bicornis). Sci. Rep. 7, 41417 (10.1038/srep41417) PubMed DOI PMC
Brown SM, Houlden BA. 2000. Conservation genetics of the black rhinoceros (Diceros bicornis). Conserv. Genet. 1, 365–370. (10.1023/A:1011579807460) DOI
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, Population genetics software for Windows TM. Montpellier, France: Université de Montpellier II.
Goudet J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486. (10.1093/oxfordjournals.jhered.a111627) DOI
Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. (10.1111/j.1755-0998.2010.02847.x) PubMed DOI
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595. PubMed PMC
Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925. PubMed PMC
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. PubMed PMC
Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. (10.1093/oxfordjournals.molbev.a026036) PubMed DOI
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (10.1186/1471-2148-7-214) PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772. (10.1038/nmeth.2109) PubMed DOI PMC
Beaumont M. 1999. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029. PubMed PMC
Storz J, Beaumont M. 2002. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154–166. (10.1111/j.0014-3820.2002.tb00857.x) PubMed DOI
Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035. PubMed PMC
Wegmann D, Excoffier L. 2010. Bayesian inference of the demographic history of chimpanzees. Mol. Biol. Evol. 27, 1425–1435. (10.1093/molbev/msq028) PubMed DOI
Grollemund R, Branford S, Bostoen K, Meade A, Venditti C, Pagel M. 2015. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl Acad. Sci. USA 112, 13 296–13 301. (10.1073/pnas.1503793112) PubMed DOI PMC
Merenlender AM, Woodruff DS, Ryder OA, Kock R, Vahala J. 1889. Allozyme variation and differentiation in African and Indian rhinoceroses. J. Hered. 80, 377–382. (10.1093/oxfordjournals.jhered.a110878) PubMed DOI
Vincens A, Schwartz D, Bertaux J, Elenga H, de Namur C. 1998. Late Holocene climatic changes in western equatorial Africa inferred from pollen from Lake Sinnda, southern Congo. Quat. Res. 50, 34–45. (10.1006/qres.1998.1979) DOI
Bayon G, Dennielou B, Etoubleau J, Ponzevera E, Toucanne S, Bermell S. 2012. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222. (10.1126/science.1215400) PubMed DOI
Patin E, et al. 2014. The impact of agricultural emergence on the genetic history of African rainforest hunter-gatherers and agriculturalists. Nat. Commun. 5, 3163 (10.1038/ncomms4163) PubMed DOI
Clark JD, Brown KS. 2001. The Twin Rivers Kopje, Zambia: stratigraphy, fauna, and artefact assemblages from the 1954 and 1956 excavations. J. Archaeol. Sci. 28, 305–330. (10.1006/jasc.2000.0563) DOI
Gifford DP, Issac GL, Nelson CM. 1980. Evidence for predation and pastoralism at prolonged drift: a pastoral Neolithic site in Kenya. Azania 15, 57–108. (10.1080/00672708009511277) DOI
Emslie R, Amin R, Kock R (eds). 2009. Guidelines for the in situ re-introduction and translocation of African and Asian rhinoceros. Gland, Switzerland: IUCN.
Wasser SK, Brown L, Mailand C, Mondol S, Clark W, Laurie C, Weir BS. 2015. Genetic assignment of large seizures of elephant ivory reveals Africa's major poaching hotspots. Science 349, 84–87. (10.1126/science.aaa2457) PubMed DOI PMC
Ishida Y, Gugala NA, Georgiadis NJ, Roca AL. 2018. Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant (Loxodonta cyclotis). Ecol. Evol. 8, 4919–4931. (10.1002/ece3.4062) PubMed DOI PMC
Harper C, et al. 2018. Robust forensic matching of confiscated horns to individual poached African rhinoceros. Curr. Biol. 28, R13–R14. (10.1016/j.cub.2017.11.005) PubMed DOI
Hildebrandt TB, et al. 2018. Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun. 9, 2589 (10.1038/s41467-018-04959-2) PubMed DOI PMC
Griffiths CJ, Hansen DM, Jones CG, Zuël N, Harris S. 2011. Resurrecting extinct interactions with extant substitutes. Curr. Biol. 21, 762–765. (10.1016/j.cub.2011.03.042) PubMed DOI
Moodley Y, et al. 2018. Data from: Contrasting evolutionary history, anthropogenic declines and genetic contact in the northern and southern white rhinoceros (Ceratotherium simum) Dryad Digital Repository. (10.5061/dryad.6mc1606) PubMed DOI PMC