Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin
Language English Country Switzerland Media electronic
Document type Journal Article
        Grant support
          
              031A262A 
          
      Bundesministerium für Bildung und Forschung   
      
          
              2016/02195-1 
          
      Fundação de Amparo à Pesquisa do Estado de São Paulo   
      
          
              doctoral scholarship 
          
      SFB 1112   
      
          
              doctoral scholarship 
          
      Elsa-Neumann   
      
          
              16-25687J 
          
      Czech Science Foundation   
      
          
              CZ.02.1.01/0.0/0.0/16_019/0000841 co-funded by ERDF 
          
      EFSA-CDN   
      
          
              Open Access funding 
          
      Freie Universität Berlin   
      
      
    PubMed
          
           30413126
           
          
          
    PubMed Central
          
           PMC6275002
           
          
          
    DOI
          
           10.3390/ijms19113521
           
          
          
      PII:  ijms19113521
  
    Knihovny.cz E-resources
    
  
              
      
- Keywords
- advanced glycated end products, aging, diabetes, electron microscopy, nanomedicine, reconstructed human skin, ribose, skin absorption,
- MeSH
- Basement Membrane drug effects ultrastructure MeSH
- Cell Differentiation drug effects MeSH
- Epidermis drug effects ultrastructure MeSH
- Fibroblasts drug effects ultrastructure MeSH
- Keratinocytes drug effects ultrastructure MeSH
- Skin drug effects ultrastructure MeSH
- Humans MeSH
- Glycation End Products, Advanced metabolism MeSH
- Ribose pharmacology MeSH
- Dermis drug effects ultrastructure MeSH
- Skin Aging drug effects MeSH
- Microscopy, Electron, Transmission MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycation End Products, Advanced MeSH
- Ribose MeSH
Aging depicts one of the major challenges in pharmacology owing to its complexity and heterogeneity. Thereby, advanced glycated end-products modify extracellular matrix proteins, but the consequences on the skin barrier function remain heavily understudied. Herein, we utilized transmission electron microscopy for the ultrastructural analysis of ribose-induced glycated reconstructed human skin (RHS). Molecular and functional insights substantiated the ultrastructural characterization and proved the relevance of glycated RHS beyond skin aging. In particular, electron microscopy mapped the accumulation and altered spatial orientation of fibrils and filaments in the dermal compartment of glycated RHS. Moreover, the epidermal basement membrane appeared thicker in glycated than in non-glycated RHS, but electron microscopy identified longitudinal clusters of the finest collagen fibrils instead of real thickening. The stratum granulosum contained more cell layers, the morphology of keratohyalin granules decidedly differed, and the stratum corneum lipid order increased in ribose-induced glycated RHS, while the skin barrier function was almost not affected. In conclusion, dermal advanced glycated end-products markedly changed the epidermal morphology, underlining the importance of matrix⁻cell interactions. The phenotype of ribose-induced glycated RHS emulated aged skin in the dermis, while the two to three times increased thickness of the stratum granulosum resembled poorer cornification.
Collegium Medicum Berlin Luisenstr 54 10117 Berlin Germany
Institute of Pharmacy Freie Universität Berlin Königin Luise Str 2 4 14195 Berlin Germany
See more in PubMed
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Reeve E., Trenaman S.C., Rockwood K., Hilmer S.N. Pharmacokinetic and pharmacodynamic alterations in older people with dementia. Expert Opin. Drug Metab. Toxicol. 2017;13:651–668. doi: 10.1080/17425255.2017.1325873. PubMed DOI
Papagrigoraki A., Del Giglio M., Cosma C., Maurelli M., Girolomoni G., Lapolla A. Advanced Glycation End Products are Increased in the Skin and Blood of Patients with Severe Psoriasis. Acta Derm.-Venereol. 2017;97:782–787. doi: 10.2340/00015555-2661. PubMed DOI
Lima A.L., Illing T., Schliemann S., Elsner P. Cutaneous Manifestations of Diabetes Mellitus: A Review. Am. J. Clin. Dermatol. 2017;18:541–553. doi: 10.1007/s40257-017-0275-z. PubMed DOI
Verzijl N., DeGroot J., Thorpe S.R., Bank R.A., Shaw J.N., Lyons T.J., Bijlsma J.W., Lafeber F.P., Baynes J.W., TeKoppele J.M. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 2000;275:39027–39031. doi: 10.1074/jbc.M006700200. PubMed DOI
Pageon H., Zucchi H., Dai Z., Sell D.R., Strauch C.M., Monnier V.M., Asselineau D. Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. BioRes. Open Access. 2015;4:54–64. doi: 10.1089/biores.2014.0053. PubMed DOI PMC
Yokota M., Tokudome Y. The Effect of Glycation on Epidermal Lipid Content, Its Metabolism and Change in Barrier Function. Skin Pharmacol. Physiol. 2016;29:231–242. doi: 10.1159/000448121. PubMed DOI
Cadau S., Leoty-Okombi S., Pain S., Bechetoille N., Andre-Frei V., Berthod F. In vitro glycation of an endothelialized and innervated tissue-engineered skin to screen anti-AGE molecules. Biomaterials. 2015;51:216–225. doi: 10.1016/j.biomaterials.2015.01.066. PubMed DOI
Pennacchi P.C., de Almeida M.E., Gomes O.L., Faiao-Flores F., de Araujo Crepaldi M.C., Dos Santos M.F., de Moraes Barros S.B., Maria-Engler S.S. Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging. Tissue Eng. Part A. 2015;21:2417–2425. doi: 10.1089/ten.tea.2015.0009. PubMed DOI
Morimoto H., Gu L., Zeng H., Maeda K. Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. Cosmetics. 2017;4:38. doi: 10.3390/cosmetics4040038. DOI
Käßmeyer S., Sehl J., Khiao In M., Merle R., Richardson K., Plendl J. Subcellular interactions during vascular morphogenesis in 3D cocultures between endothelial cells and fibroblasts. Int. J. Mol. Sci. 2017;18:2590. doi: 10.3390/ijms18122590. PubMed DOI PMC
Longo C., Casari A., De Pace B., Simonazzi S., Mazzaglia G., Pellacani G. Proposal for an in vivo histopathologic scoring system for skin aging by means of confocal microscopy. Skin Res. Technol. 2013;19:e167–e173. doi: 10.1111/j.1600-0846.2012.00623.x. PubMed DOI
Ulrich M., Lange-Asschenfeldt S., Gonzalez S. Clinical applicability of in vivo reflectance confocal microscopy in dermatology. G. Ital. Dermatol. Venereol. 2012;147:171–178. PubMed
Lewis R.N., McElhaney R.N. Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes: Practical considerations. Methods Mol. Biol. 2007;400:207–226. doi: 10.1007/978-1-59745-519-0_14. PubMed DOI
Zoschke C., Ulrich M., Sochorova M., Wolff C., Vavrova K., Ma N., Ulrich C., Brandner J.M., Schafer-Korting M. The barrier function of organotypic non-melanoma skin cancer models. J. Control. Release. 2016;233:10–18. doi: 10.1016/j.jconrel.2016.04.037. PubMed DOI
van den Bogaard E.H., Tjabringa G.S., Joosten I., Vonk-Bergers M., van Rijssen E., Tijssen H.J., Erkens M., Schalkwijk J., Koenen H.J. Crosstalk between keratinocytes and T cells in a 3D microenvironment: A model to study inflammatory skin diseases. J. Investig. Dermatol. 2014;134:719–727. doi: 10.1038/jid.2013.417. PubMed DOI
Danso M.O., van Drongelen V., Mulder A., van Esch J., Scott H., van Smeden J., El Ghalbzouri A., Bouwstra J.A. TNF-alpha and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J. Investig. Dermatol. 2014;134:1941–1950. doi: 10.1038/jid.2014.83. PubMed DOI
Khalifah R.G., Todd P., Booth A.A., Yang S.X., Mott J.D., Hudson B.G. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies. Biochemistry. 1996;35:4645–4654. doi: 10.1021/bi9525942. PubMed DOI
Luers L., Rysiewski K., Dumpitak C., Birkmann E. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios. Rejuv. Res. 2012;15:201–205. doi: 10.1089/rej.2011.1284. PubMed DOI
Pageon H., Techer M.P., Asselineau D. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp. Gerontol. 2008;43:584–588. doi: 10.1016/j.exger.2008.04.004. PubMed DOI
Brings S., Fleming T., Freichel M., Muckenthaler M., Herzig S., Nawroth P. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int. J. Mol. Sci. 2017;18:984. doi: 10.3390/ijms18050984. PubMed DOI PMC
Rinnerthaler M., Streubel M.K., Bischof J., Richter K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015;68:59–65. doi: 10.1016/j.exger.2014.09.015. PubMed DOI
Pageon H., Bakala H., Monnier V.M., Asselineau D. Collagen glycation triggers the formation of aged skin in vitro. Eur. J. Dermatol. 2007;17:12–20. doi: 10.1684/ejd.2007.0102. PubMed DOI
Maas-Szabowski N., Szabowski A., Stark H.J., Andrecht S., Kolbus A., Schorpp-Kistner M., Angel P., Fusenig N.E. Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. J. Investig. Dermatol. 2001;116:816–820. doi: 10.1046/j.1523-1747.2001.01349.x. PubMed DOI
Löwa A., Vogt A., Kaessmeyer S., Hedtrich S. Generation of full-thickness skin equivalents using hair follicle-derived primary human keratinocytes and fibroblasts. J. Tissue Eng. Regener. Med. 2018;12:e2134–e2146. doi: 10.1002/term.2646. PubMed DOI
Breitkreutz D., Koxholt I., Thiemann K., Nischt R. Skin basement membrane: The foundation of epidermal integrity—BM functions and diverse roles of bridging molecules nidogen and perlecan. BioMed Res. Int. 2013;2013:179784. doi: 10.1155/2013/179784. PubMed DOI PMC
Candiello J., Cole G.J., Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 2010;29:402–410. doi: 10.1016/j.matbio.2010.03.004. PubMed DOI
Wolberink E.A., van Erp P.E., Teussink M.M., van de Kerkhof P.C., Gerritsen M.J. Cellular features of psoriatic skin: Imaging and quantification using in vivo reflectance confocal microscopy. Cytom. Part B Clin. Cytom. 2011;80:141–149. doi: 10.1002/cyto.b.20575. PubMed DOI
Brody I. The ultrastructure of the epidermis in psoriasis vulgaris as revealed by electron microscopy. 1. The dermo-epidermal junction and the stratum basale in parakeratosis without keratohyalin. J. Ultrastruct. Res. 1962;6:304–323. doi: 10.1016/S0022-5320(62)80037-9. PubMed DOI
Steven A.C., Bisher M.E., Roop D.R., Steinert P.M. Biosynthetic pathways of filaggrin and loricrin—Two major proteins expressed by terminally differentiated epidermal keratinocytes. J. Struct. Biol. 1990;104:150–162. doi: 10.1016/1047-8477(90)90071-J. PubMed DOI
Alnasif N., Zoschke C., Fleige E., Brodwolf R., Boreham A., Rühl E., Eckl K.M., Merk H.F., Hennies H.C., Alexiev U., et al. Penetration of normal, damaged and diseased skin—An in vitro study on dendritic core-multishell nanotransporters. J. Control. Release. 2014;185c:45–50. doi: 10.1016/j.jconrel.2014.04.006. PubMed DOI
Pageon H., Asselineau D. An in vitro approach to the chronological aging of skin by glycation of the collagen: The biological effect of glycation on the reconstructed skin model. Ann. N. Y. Acad. Sci. 2005;1043:529–532. doi: 10.1196/annals.1333.060. PubMed DOI
Turksen K., Kupper T., Degenstein L., Williams I., Fuchs E. Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. USA. 1992;89:5068–5072. doi: 10.1073/pnas.89.11.5068. PubMed DOI PMC
Sakai T., Hatano Y., Zhang W., Fujiwara S., Nishiyori R. Knockdown of either filaggrin or loricrin increases the productions of interleukin (IL)-1alpha, IL-8, IL-18 and granulocyte macrophage colony-stimulating factor in stratified human keratinocytes. J. Dermatol. Sci. 2015;80:158–160. doi: 10.1016/j.jdermsci.2015.09.002. PubMed DOI
Brody I. The ultrastructure of the epidermis in psoriasis vulgaris as revealed by electron microscopy: 4. Stratum corneum in parakeratosis without keretohyalin. J. Ultrastruct. Res. 1962;6:354–367. doi: 10.1016/S0022-5320(62)80040-9. PubMed DOI
Gould A.R., Sharp P.J., Smith D.R., Stegink A.J., Chase C.J., Kovacs J.C., Penglis S., Chatterton B.E., Bunn C.L. Increased permeability of psoriatic skin to the protein, plasminogen activator inhibitor 2. Arch. Dermatol. Res. 2003;295:249–254. doi: 10.1007/s00403-003-0425-4. PubMed DOI
Papagrigoraki A., Maurelli M., del Giglio M., Gisondi P., Girolomoni G. Advanced Glycation End Products in the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2017;18:2471. doi: 10.3390/ijms18112471. PubMed DOI PMC
Gerecke C., Edlich A., Giulbudagian M., Schumacher F., Zhang N., Said A., Yealland G., Lohan S.B., Neumann F., Meinke M.C., et al. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology. 2017;11:267–277. doi: 10.1080/17435390.2017.1292371. PubMed DOI
Richardson K.C., Jarett L., Finke E.H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960;35:313–323. doi: 10.3109/10520296009114754. PubMed DOI
Vavrova K., Henkes D., Struver K., Sochorova M., Skolova B., Witting M.Y., Friess W., Schreml S., Meier R.J., Schafer-Korting M., et al. Filaggrin deficiency leads to impaired lipid profile and altered acidification pathways in a 3D skin construct. J. Investig. Dermatol. 2014;134:746–753. doi: 10.1038/jid.2013.402. PubMed DOI
Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., Vávrová K. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 2015;17:5456–5459. doi: 10.1021/acs.orglett.5b02816. PubMed DOI
Kováčik A., Opálka L., Šilarová M., Roh J., Vávrová K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation-protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343–73350. doi: 10.1039/C6RA16565F. DOI
Radowski M.R., Shukla A., von Berlepsch H., Bottcher C., Pickaert G., Rehage H., Haag R. Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew. Chem. Int. Ed. Engl. 2007;46:1265–1269. doi: 10.1002/anie.200603801. PubMed DOI
