• This record comes from PubMed

Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin

. 2018 Nov 08 ; 19 (11) : . [epub] 20181108

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
031A262A Bundesministerium für Bildung und Forschung
2016/02195-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
doctoral scholarship SFB 1112
doctoral scholarship Elsa-Neumann
16-25687J Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841 co-funded by ERDF EFSA-CDN
Open Access funding Freie Universität Berlin

Aging depicts one of the major challenges in pharmacology owing to its complexity and heterogeneity. Thereby, advanced glycated end-products modify extracellular matrix proteins, but the consequences on the skin barrier function remain heavily understudied. Herein, we utilized transmission electron microscopy for the ultrastructural analysis of ribose-induced glycated reconstructed human skin (RHS). Molecular and functional insights substantiated the ultrastructural characterization and proved the relevance of glycated RHS beyond skin aging. In particular, electron microscopy mapped the accumulation and altered spatial orientation of fibrils and filaments in the dermal compartment of glycated RHS. Moreover, the epidermal basement membrane appeared thicker in glycated than in non-glycated RHS, but electron microscopy identified longitudinal clusters of the finest collagen fibrils instead of real thickening. The stratum granulosum contained more cell layers, the morphology of keratohyalin granules decidedly differed, and the stratum corneum lipid order increased in ribose-induced glycated RHS, while the skin barrier function was almost not affected. In conclusion, dermal advanced glycated end-products markedly changed the epidermal morphology, underlining the importance of matrix⁻cell interactions. The phenotype of ribose-induced glycated RHS emulated aged skin in the dermis, while the two to three times increased thickness of the stratum granulosum resembled poorer cornification.

See more in PubMed

López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC

Reeve E., Trenaman S.C., Rockwood K., Hilmer S.N. Pharmacokinetic and pharmacodynamic alterations in older people with dementia. Expert Opin. Drug Metab. Toxicol. 2017;13:651–668. doi: 10.1080/17425255.2017.1325873. PubMed DOI

Papagrigoraki A., Del Giglio M., Cosma C., Maurelli M., Girolomoni G., Lapolla A. Advanced Glycation End Products are Increased in the Skin and Blood of Patients with Severe Psoriasis. Acta Derm.-Venereol. 2017;97:782–787. doi: 10.2340/00015555-2661. PubMed DOI

Lima A.L., Illing T., Schliemann S., Elsner P. Cutaneous Manifestations of Diabetes Mellitus: A Review. Am. J. Clin. Dermatol. 2017;18:541–553. doi: 10.1007/s40257-017-0275-z. PubMed DOI

Verzijl N., DeGroot J., Thorpe S.R., Bank R.A., Shaw J.N., Lyons T.J., Bijlsma J.W., Lafeber F.P., Baynes J.W., TeKoppele J.M. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 2000;275:39027–39031. doi: 10.1074/jbc.M006700200. PubMed DOI

Pageon H., Zucchi H., Dai Z., Sell D.R., Strauch C.M., Monnier V.M., Asselineau D. Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. BioRes. Open Access. 2015;4:54–64. doi: 10.1089/biores.2014.0053. PubMed DOI PMC

Yokota M., Tokudome Y. The Effect of Glycation on Epidermal Lipid Content, Its Metabolism and Change in Barrier Function. Skin Pharmacol. Physiol. 2016;29:231–242. doi: 10.1159/000448121. PubMed DOI

Cadau S., Leoty-Okombi S., Pain S., Bechetoille N., Andre-Frei V., Berthod F. In vitro glycation of an endothelialized and innervated tissue-engineered skin to screen anti-AGE molecules. Biomaterials. 2015;51:216–225. doi: 10.1016/j.biomaterials.2015.01.066. PubMed DOI

Pennacchi P.C., de Almeida M.E., Gomes O.L., Faiao-Flores F., de Araujo Crepaldi M.C., Dos Santos M.F., de Moraes Barros S.B., Maria-Engler S.S. Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging. Tissue Eng. Part A. 2015;21:2417–2425. doi: 10.1089/ten.tea.2015.0009. PubMed DOI

Morimoto H., Gu L., Zeng H., Maeda K. Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. Cosmetics. 2017;4:38. doi: 10.3390/cosmetics4040038. DOI

Käßmeyer S., Sehl J., Khiao In M., Merle R., Richardson K., Plendl J. Subcellular interactions during vascular morphogenesis in 3D cocultures between endothelial cells and fibroblasts. Int. J. Mol. Sci. 2017;18:2590. doi: 10.3390/ijms18122590. PubMed DOI PMC

Longo C., Casari A., De Pace B., Simonazzi S., Mazzaglia G., Pellacani G. Proposal for an in vivo histopathologic scoring system for skin aging by means of confocal microscopy. Skin Res. Technol. 2013;19:e167–e173. doi: 10.1111/j.1600-0846.2012.00623.x. PubMed DOI

Ulrich M., Lange-Asschenfeldt S., Gonzalez S. Clinical applicability of in vivo reflectance confocal microscopy in dermatology. G. Ital. Dermatol. Venereol. 2012;147:171–178. PubMed

Lewis R.N., McElhaney R.N. Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes: Practical considerations. Methods Mol. Biol. 2007;400:207–226. doi: 10.1007/978-1-59745-519-0_14. PubMed DOI

Zoschke C., Ulrich M., Sochorova M., Wolff C., Vavrova K., Ma N., Ulrich C., Brandner J.M., Schafer-Korting M. The barrier function of organotypic non-melanoma skin cancer models. J. Control. Release. 2016;233:10–18. doi: 10.1016/j.jconrel.2016.04.037. PubMed DOI

van den Bogaard E.H., Tjabringa G.S., Joosten I., Vonk-Bergers M., van Rijssen E., Tijssen H.J., Erkens M., Schalkwijk J., Koenen H.J. Crosstalk between keratinocytes and T cells in a 3D microenvironment: A model to study inflammatory skin diseases. J. Investig. Dermatol. 2014;134:719–727. doi: 10.1038/jid.2013.417. PubMed DOI

Danso M.O., van Drongelen V., Mulder A., van Esch J., Scott H., van Smeden J., El Ghalbzouri A., Bouwstra J.A. TNF-alpha and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J. Investig. Dermatol. 2014;134:1941–1950. doi: 10.1038/jid.2014.83. PubMed DOI

Khalifah R.G., Todd P., Booth A.A., Yang S.X., Mott J.D., Hudson B.G. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies. Biochemistry. 1996;35:4645–4654. doi: 10.1021/bi9525942. PubMed DOI

Luers L., Rysiewski K., Dumpitak C., Birkmann E. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios. Rejuv. Res. 2012;15:201–205. doi: 10.1089/rej.2011.1284. PubMed DOI

Pageon H., Techer M.P., Asselineau D. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp. Gerontol. 2008;43:584–588. doi: 10.1016/j.exger.2008.04.004. PubMed DOI

Brings S., Fleming T., Freichel M., Muckenthaler M., Herzig S., Nawroth P. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int. J. Mol. Sci. 2017;18:984. doi: 10.3390/ijms18050984. PubMed DOI PMC

Rinnerthaler M., Streubel M.K., Bischof J., Richter K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015;68:59–65. doi: 10.1016/j.exger.2014.09.015. PubMed DOI

Pageon H., Bakala H., Monnier V.M., Asselineau D. Collagen glycation triggers the formation of aged skin in vitro. Eur. J. Dermatol. 2007;17:12–20. doi: 10.1684/ejd.2007.0102. PubMed DOI

Maas-Szabowski N., Szabowski A., Stark H.J., Andrecht S., Kolbus A., Schorpp-Kistner M., Angel P., Fusenig N.E. Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. J. Investig. Dermatol. 2001;116:816–820. doi: 10.1046/j.1523-1747.2001.01349.x. PubMed DOI

Löwa A., Vogt A., Kaessmeyer S., Hedtrich S. Generation of full-thickness skin equivalents using hair follicle-derived primary human keratinocytes and fibroblasts. J. Tissue Eng. Regener. Med. 2018;12:e2134–e2146. doi: 10.1002/term.2646. PubMed DOI

Breitkreutz D., Koxholt I., Thiemann K., Nischt R. Skin basement membrane: The foundation of epidermal integrity—BM functions and diverse roles of bridging molecules nidogen and perlecan. BioMed Res. Int. 2013;2013:179784. doi: 10.1155/2013/179784. PubMed DOI PMC

Candiello J., Cole G.J., Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 2010;29:402–410. doi: 10.1016/j.matbio.2010.03.004. PubMed DOI

Wolberink E.A., van Erp P.E., Teussink M.M., van de Kerkhof P.C., Gerritsen M.J. Cellular features of psoriatic skin: Imaging and quantification using in vivo reflectance confocal microscopy. Cytom. Part B Clin. Cytom. 2011;80:141–149. doi: 10.1002/cyto.b.20575. PubMed DOI

Brody I. The ultrastructure of the epidermis in psoriasis vulgaris as revealed by electron microscopy. 1. The dermo-epidermal junction and the stratum basale in parakeratosis without keratohyalin. J. Ultrastruct. Res. 1962;6:304–323. doi: 10.1016/S0022-5320(62)80037-9. PubMed DOI

Steven A.C., Bisher M.E., Roop D.R., Steinert P.M. Biosynthetic pathways of filaggrin and loricrin—Two major proteins expressed by terminally differentiated epidermal keratinocytes. J. Struct. Biol. 1990;104:150–162. doi: 10.1016/1047-8477(90)90071-J. PubMed DOI

Alnasif N., Zoschke C., Fleige E., Brodwolf R., Boreham A., Rühl E., Eckl K.M., Merk H.F., Hennies H.C., Alexiev U., et al. Penetration of normal, damaged and diseased skin—An in vitro study on dendritic core-multishell nanotransporters. J. Control. Release. 2014;185c:45–50. doi: 10.1016/j.jconrel.2014.04.006. PubMed DOI

Pageon H., Asselineau D. An in vitro approach to the chronological aging of skin by glycation of the collagen: The biological effect of glycation on the reconstructed skin model. Ann. N. Y. Acad. Sci. 2005;1043:529–532. doi: 10.1196/annals.1333.060. PubMed DOI

Turksen K., Kupper T., Degenstein L., Williams I., Fuchs E. Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. USA. 1992;89:5068–5072. doi: 10.1073/pnas.89.11.5068. PubMed DOI PMC

Sakai T., Hatano Y., Zhang W., Fujiwara S., Nishiyori R. Knockdown of either filaggrin or loricrin increases the productions of interleukin (IL)-1alpha, IL-8, IL-18 and granulocyte macrophage colony-stimulating factor in stratified human keratinocytes. J. Dermatol. Sci. 2015;80:158–160. doi: 10.1016/j.jdermsci.2015.09.002. PubMed DOI

Brody I. The ultrastructure of the epidermis in psoriasis vulgaris as revealed by electron microscopy: 4. Stratum corneum in parakeratosis without keretohyalin. J. Ultrastruct. Res. 1962;6:354–367. doi: 10.1016/S0022-5320(62)80040-9. PubMed DOI

Gould A.R., Sharp P.J., Smith D.R., Stegink A.J., Chase C.J., Kovacs J.C., Penglis S., Chatterton B.E., Bunn C.L. Increased permeability of psoriatic skin to the protein, plasminogen activator inhibitor 2. Arch. Dermatol. Res. 2003;295:249–254. doi: 10.1007/s00403-003-0425-4. PubMed DOI

Papagrigoraki A., Maurelli M., del Giglio M., Gisondi P., Girolomoni G. Advanced Glycation End Products in the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2017;18:2471. doi: 10.3390/ijms18112471. PubMed DOI PMC

Gerecke C., Edlich A., Giulbudagian M., Schumacher F., Zhang N., Said A., Yealland G., Lohan S.B., Neumann F., Meinke M.C., et al. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology. 2017;11:267–277. doi: 10.1080/17435390.2017.1292371. PubMed DOI

Richardson K.C., Jarett L., Finke E.H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960;35:313–323. doi: 10.3109/10520296009114754. PubMed DOI

Vavrova K., Henkes D., Struver K., Sochorova M., Skolova B., Witting M.Y., Friess W., Schreml S., Meier R.J., Schafer-Korting M., et al. Filaggrin deficiency leads to impaired lipid profile and altered acidification pathways in a 3D skin construct. J. Investig. Dermatol. 2014;134:746–753. doi: 10.1038/jid.2013.402. PubMed DOI

Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., Vávrová K. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 2015;17:5456–5459. doi: 10.1021/acs.orglett.5b02816. PubMed DOI

Kováčik A., Opálka L., Šilarová M., Roh J., Vávrová K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation-protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343–73350. doi: 10.1039/C6RA16565F. DOI

Radowski M.R., Shukla A., von Berlepsch H., Bottcher C., Pickaert G., Rehage H., Haag R. Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew. Chem. Int. Ed. Engl. 2007;46:1265–1269. doi: 10.1002/anie.200603801. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...