Millimeter Wave Vehicular Channel Emulation: A Framework for Balancing Complexity and Accuracy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30453556
PubMed Central
PMC6263500
DOI
10.3390/s18113997
PII: s18113997
Knihovny.cz E-zdroje
- Klíčová slova
- Akaike information criterion, V2X communications, channel emulation, cluster channels, mmwave, model order estimation,
- Publikační typ
- časopisecké články MeSH
We propose a general framework for the specification of a sparse representation of millimeter wave vehicular propagation channels and apply this to both synthetic data and real-world observations from channel sounding experiments. The proposed framework is based on the c-LASSO (complex Least Absolute Shrinkage and Selection Operator) which minimizes the mean squared error of the sparse representation for a given number of degrees of freedom. By choosing the number of degrees of freedom, we balance the numerical complexity of the representation in the channel emulation against its accuracy in terms of the mean squared error. A key ingredient is the choice of basis of the representation and we discuss two options: the Fourier basis and its projection onto a given subband. The results indicate that the subband-projected Fourier basis is a low-complexity choice with high fidelity for representing clustered channel impulse responses. Finally, a sequential estimator is formulated which enforces a consistent temporal evolution of the geometry of the interacting objects in the propagation environment. We demonstrate the performance of our approach using both synthetic data and measured 60 GHz vehicular channel traces.
Department of Radio Electronics TU Brno 601 90 Czech Republic
Institute of Telecommunications 1040 TU Wien 1040 Vienna Austria
Zobrazit více v PubMed
Rappaport T.S., Sun S., Mayzus R., Zhao H., Azar Y., Wang K., Wong G.N., Schulz J.K., Samimi M., Gutierrez F., Jr. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access. 2013;1:335–349. doi: 10.1109/ACCESS.2013.2260813. DOI
Nissel R., Zöchmann E., Lerch M., Caban S., Rupp M. Low-latency MISO FBMC-OQAM: It works for millimeter waves!; Proceedings of the MTT-S International Microwave Symposium (IMS); Honolulu, HI, USA. 4–9 June 2017; pp. 673–676.
Ayach O.E., Heath R.W., Abu-Surra S., Rajagopal S., Pi Z. The capacity optimality of beam steering in large millimeter wave MIMO systems; Proceedings of the 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC); Cesme, Turkey. 17–20 June 2012; pp. 100–104.
Yan Y., Xie G., Lavery M.P., Huang H., Ahmed N., Bao C., Ren Y., Cao Y., Li L., Zhao Z., et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 2014;5:1–9. doi: 10.1038/ncomms5876. PubMed DOI PMC
Choi J., Va V., Gonzalez-Prelcic N., Daniels R., Bhat C.R., Heath R.W. Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing. IEEE Commun. Mag. 2016;54:160–167. doi: 10.1109/MCOM.2016.1600071CM. DOI
Biswas S., Tatchikou R., Dion F. Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. IEEE Commun. Mag. 2006;44:74–82. doi: 10.1109/MCOM.2006.1580935. DOI
Perfecto C., Del Ser J., Bennis M. Millimeter-wave V2V communications: Distributed association and beam alignment. IEEE J. Sel. Areas Commun. 2017;35:2148–2162. doi: 10.1109/JSAC.2017.2719998. DOI
Bernado L., Zemen T., Tufvesson F., Molisch A.F., Mecklenbräuker C.F. Delay and Doppler Spreads of Nonstationary Vehicular Channels for Safety-Relevant Scenarios. IEEE Trans. Veh. Technol. 2014;63:82–93. doi: 10.1109/TVT.2013.2271956. DOI
Mecklenbräuker C.F., Molisch A.F., Karedal J., Tufvesson F., Paier A., Bernado L., Zemen T., Klemp O., Czink N. Vehicular Channel Characterization and Its Implications for Wireless System Design and Performance. Proc. IEEE. 2011;99:1189–1212. doi: 10.1109/JPROC.2010.2101990. DOI
Zöchmann E., Caban S., Lerch M., Rupp M. Resolving the angular profile of 60 GHz wireless channels by delay-Doppler measurements; Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM); Rio de Janeiro, Brazil. 10–13 July 2016; pp. 1–5.
Va V., Choi J., Heath R.W. The impact of beamwidth on temporal channel variation in vehicular channels and its implications. IEEE Trans. Veh. Technol. 2017;66:5014–5029. doi: 10.1109/TVT.2016.2622164. DOI
Rangan S., Rappaport T.S., Erkip E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE. 2014;102:366–385. doi: 10.1109/JPROC.2014.2299397. DOI
Zöchmann E., Hofer M., Lerch M., Blumenstein J., Sangodoyin S., Groll H., Pratschner S., Caban S., Bernadó D.L.L., Zemen T., et al. Statistical evaluation of delay and Doppler spread in 60 GHz vehicle-to-vehicle channels during overtaking; Proceedings of the APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC); Cartagena, Colombia. 10–14 September 2018; pp. 1–4.
Boeglen H., Hilt B., Lorenz P., Ledy J., Poussard A.M., Vauzelle R. A survey of V2V channel modeling for VANET simulations; Proceedings of the Eighth International Conference on Wireless On-Demand Network Systems and Services; Bardonecchia, Italy. 26–28 January 2011; pp. 117–123.
Tripp-Barba C., Urquiza-Aguiar L., Estrada J., Aguilar-Calderón J.A., Zaldívar-Colado A., Igartua M.A. Impact of packet error modeling in VANET simulations; Proceedings of the International Conference on Adaptive Science & Technology (ICAST); Ota, Nigeria. 29–31 October 2014; pp. 1–7.
Paier A., Karedal J., Czink N., Dumard C., Zemen T., Tufvesson F., Molisch A.F., Mecklenbräuker C.F. Characterization of Vehicle-to-Vehicle Radio Channels from Measurements at 5.2 GHz. Wirel. Pers. Commun. 2009;50:19–32. doi: 10.1007/s11277-008-9546-6. DOI
Ghiaasi G., Blazek T., Ashury M., Santos R.R., Mecklenbräuker C. Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios. Wirel. Commun. Mobile Comput. 2018 doi: 10.1155/2018/2423837. DOI
Hofer M., Xu Z., Zemen T. Real-time channel emulation of a geometry-based stochastic channel model on a SDR platform; Proceedings of the 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC); Hokkaido, Japan. 3–6 July 2017; pp. 1–5.
Hofer M., Xu Z., Vlastaras D., Schrenk B., Loeschenbrand D., Tufvesson F., Zemen T. Validation of a Real-Time Geometry-Based Stochastic Channel Model for Vehicular Scenarios; Proceedings of the 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–5.
Dreyer N., Moeller A., Baumgarten J., Mir Z.H., Kuerner T., Filali F. On Building Realistic Reference Scenarios for IEEE 802.11 p/LTE-Based Vehicular Network Evaluations; Proceedings of the 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–7.
Ai B., Cheng X., Kürner T., Zhong Z.D., Guan K., He R.S., Xiong L., Matolak D.W., Michelson D.G., Briso-Rodriguez C. Challenges toward wireless communications for high-speed railway. IEEE Trans. Intell. Transp. Syst. 2014;15:2143–2158. doi: 10.1109/TITS.2014.2310771. DOI
Acosta-Marum G., Ingram M.A. Six Time-and Frequency- Selective Empirical Channel Models for Vehicular Wireless LANs. IEEE Veh. Technol. Mag. 2007;2:4–11. doi: 10.1109/MVT.2008.917435. DOI
Rappaport T.S., MacCartney G.R., Samimi M.K., Sun S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015;63:3029–3056. doi: 10.1109/TCOMM.2015.2434384. DOI
Zöchmann E., Lerch M., Caban S., Mecklenbräuker C.F., Mecklenbrauker C.F., Rupp M. Directional evaluation of receive power, Rician K-factor and RMS delay spread obtained from power measurements of 60 GHz indoor channels; Proceedings of the APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC); Cairns, Australia. 19–23 September 2016; pp. 246–249.
Zöchmann E., Lerch M., Pratschner S., Nissel R., Caban S., Rupp M. Associating spatial information to directional millimeter wave channel measurements; Proceedings of the 86th Vehicular Technology Conference (VTC-Fall); Toronto, ON, Canada. 24–27 September 2017.
Ben-Dor E., Rappaport T.S., Qiao Y., Lauffenburger S.J. Millimeter-Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel Sounder; Proceedings of the 2011 GLOBECOM; Kathmandu, Nepal. 5–9 December 2011; pp. 1–6.
Blumenstein J., Prokes A., Chandra A., Mikulasek T., Marsalek R., Zemen T., Mecklenbräuker C.F. In-Vehicle Channel Measurement, Characterization, and Spatial Consistency Comparison of 3-11 GHz and 55-65 GHz Frequency Bands. IEEE Trans. Veh. Technol. 2017;66:3526–3537. doi: 10.1109/TVT.2016.2600101. DOI
Zöchmann E., Mecklenbräuker C.F., Lerch M., Pratschner S., Hofer M., Löschenbrand D., Blumenstein J., Sangodoyin S., Artner G., Caban S., et al. Measured Delay and Doppler Profiles of Overtaking Vehicles at 60 GHz; Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP); London, UK. 9–13 April 2018; pp. 1–5.
Saleh A., Valenzuela R. A Statistical Model for Indoor Multipath Propagation. IEEE J. Sel. Areas Commun. 1987;5:128–137. doi: 10.1109/JSAC.1987.1146527. DOI
Gustafson C., Haneda K., Wyne S., Tufvesson F. On mm-Wave Multipath Clustering and Channel Modeling. IEEE Trans. Antennas Propag. 2014;62:1445–1455. doi: 10.1109/TAP.2013.2295836. DOI
He R., Chen W., Ai B., Molisch A.F., Wang W., Zhong Z., Yu J., Sangodoyin S. On the Clustering of Radio Channel Impulse Responses Using Sparsity-Based Methods. IEEE Trans. Antennas Propag. 2016;64:2465–2474. doi: 10.1109/TAP.2016.2546953. DOI
Blazek T., Mecklenbräuker C., Smely D., Ghiaasi G., Ashury M. Vehicular Channel Models: A System Level Performance Analysis of Tapped Delay Line Models; Proceedings of the 15th International Conference on ITS Telecommunications (ITST); Warsaw, Poland. 29–31 May 2017; pp. 1–8.
Fernandez-Carames T.M., Gonzalez-Lopez M., Castedo L. FPGA-based vehicular channel emulator for evaluation of IEEE 802.11p transceivers; Proceedings of the 9th International Conference on Intelligent Transportation Systems; Lille, France. 20–22 October 2009; pp. 592–597.
Mecklenbräuker C.F., Gerstoft P., Zöchmann E. c–LASSO and its dual for sparse signal estimation from array data. Signal Process. 2017;130:204–216. doi: 10.1016/j.sigpro.2016.06.029. DOI
Tibshirani R.J., Taylor J. The solution path of the generalized lasso. Ann. Stat. 2011;39:1335–1371. doi: 10.1214/11-AOS878. DOI
Burnham K.P., Anderson D.R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Meth. Res. 2004;33:261–304. doi: 10.1177/0049124104268644. DOI
Tauböck G., Hlawatsch F. Compressed sensing based estimation of doubly selective channels using a sparsity-optimized basis expansion; Proceedings of the 2008 16th European Signal Processing Conference; Lausanne, Switzerland. 25–29 August 2008; pp. 1–5.
Tauböck G., Hlawatsch F., Eiwen D., Rauhut H. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE J. Sel. Top. Signal Process. 2010;4:255–271. doi: 10.1109/JSTSP.2010.2042410. DOI
Blazek T., Mecklenbräuker C. Sparse time-variant impulse response estimation for vehicular channels using the c-LASSO; Proceedings of the 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC); Montreal, QC, Canada. 8–13 October 2018.
Grant M., Boyd S. CVX: Matlab Software for Disciplined Convex Programming. [(accessed on 15 November 2018)]; Available online: http://cvxr.com/
Zöchmann E., Gerstoft P., Mecklenbräuker C.F. Density evolution of sparse source signals; Proceedings of the 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa); Pisa, Italy. 17–19 June 2015; pp. 124–128.
Samimi M.K., MacCartney G.R., Sun S., Rappaport T.S. 28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels; Proceedings of the 83rd Vehicular Technology Conference (VTC Spring); Nanjing, China. 15–18 May 2016; pp. 1–6.
Kim C., Sun X., Chiam L., Kannan B., Chin F., Garg H. Characterization of ultra-wideband channels for outdoor office environment; Proceedings of the Wireless Communications and Networking Conference; New Orleans, LA, USA. 13–17 March 2005; pp. 950–955.
Meijerink A., Molisch A.F. On the Physical Interpretation of the Saleh–Valenzuela Model and the Definition of Its Power Delay Profiles. IEEE Trans. Antennas Propag. 2014;62:4780–4793. doi: 10.1109/TAP.2014.2335812. DOI
Posada D., Buckley T.R., Thorne J. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. Syst. Biol. 2004;53:793–808. doi: 10.1080/10635150490522304. PubMed DOI
Sousa E.S., Jovanovic V.M., Daigneault C. Delay spread measurements for the digital cellular channel in Toronto. IEEE Trans. Veh. Technol. 1994;43:837–847. doi: 10.1109/25.330145. DOI
Digitally-Compensated Wideband 60 GHz Test-Bed for Power Amplifier Predistortion Experiments