Millimeter Wave Vehicular Channel Emulation: A Framework for Balancing Complexity and Accuracy

. 2018 Nov 16 ; 18 (11) : . [epub] 20181116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30453556

We propose a general framework for the specification of a sparse representation of millimeter wave vehicular propagation channels and apply this to both synthetic data and real-world observations from channel sounding experiments. The proposed framework is based on the c-LASSO (complex Least Absolute Shrinkage and Selection Operator) which minimizes the mean squared error of the sparse representation for a given number of degrees of freedom. By choosing the number of degrees of freedom, we balance the numerical complexity of the representation in the channel emulation against its accuracy in terms of the mean squared error. A key ingredient is the choice of basis of the representation and we discuss two options: the Fourier basis and its projection onto a given subband. The results indicate that the subband-projected Fourier basis is a low-complexity choice with high fidelity for representing clustered channel impulse responses. Finally, a sequential estimator is formulated which enforces a consistent temporal evolution of the geometry of the interacting objects in the propagation environment. We demonstrate the performance of our approach using both synthetic data and measured 60 GHz vehicular channel traces.

Zobrazit více v PubMed

Rappaport T.S., Sun S., Mayzus R., Zhao H., Azar Y., Wang K., Wong G.N., Schulz J.K., Samimi M., Gutierrez F., Jr. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access. 2013;1:335–349. doi: 10.1109/ACCESS.2013.2260813. DOI

Nissel R., Zöchmann E., Lerch M., Caban S., Rupp M. Low-latency MISO FBMC-OQAM: It works for millimeter waves!; Proceedings of the MTT-S International Microwave Symposium (IMS); Honolulu, HI, USA. 4–9 June 2017; pp. 673–676.

Ayach O.E., Heath R.W., Abu-Surra S., Rajagopal S., Pi Z. The capacity optimality of beam steering in large millimeter wave MIMO systems; Proceedings of the 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC); Cesme, Turkey. 17–20 June 2012; pp. 100–104.

Yan Y., Xie G., Lavery M.P., Huang H., Ahmed N., Bao C., Ren Y., Cao Y., Li L., Zhao Z., et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 2014;5:1–9. doi: 10.1038/ncomms5876. PubMed DOI PMC

Choi J., Va V., Gonzalez-Prelcic N., Daniels R., Bhat C.R., Heath R.W. Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing. IEEE Commun. Mag. 2016;54:160–167. doi: 10.1109/MCOM.2016.1600071CM. DOI

Biswas S., Tatchikou R., Dion F. Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. IEEE Commun. Mag. 2006;44:74–82. doi: 10.1109/MCOM.2006.1580935. DOI

Perfecto C., Del Ser J., Bennis M. Millimeter-wave V2V communications: Distributed association and beam alignment. IEEE J. Sel. Areas Commun. 2017;35:2148–2162. doi: 10.1109/JSAC.2017.2719998. DOI

Bernado L., Zemen T., Tufvesson F., Molisch A.F., Mecklenbräuker C.F. Delay and Doppler Spreads of Nonstationary Vehicular Channels for Safety-Relevant Scenarios. IEEE Trans. Veh. Technol. 2014;63:82–93. doi: 10.1109/TVT.2013.2271956. DOI

Mecklenbräuker C.F., Molisch A.F., Karedal J., Tufvesson F., Paier A., Bernado L., Zemen T., Klemp O., Czink N. Vehicular Channel Characterization and Its Implications for Wireless System Design and Performance. Proc. IEEE. 2011;99:1189–1212. doi: 10.1109/JPROC.2010.2101990. DOI

Zöchmann E., Caban S., Lerch M., Rupp M. Resolving the angular profile of 60 GHz wireless channels by delay-Doppler measurements; Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM); Rio de Janeiro, Brazil. 10–13 July 2016; pp. 1–5.

Va V., Choi J., Heath R.W. The impact of beamwidth on temporal channel variation in vehicular channels and its implications. IEEE Trans. Veh. Technol. 2017;66:5014–5029. doi: 10.1109/TVT.2016.2622164. DOI

Rangan S., Rappaport T.S., Erkip E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE. 2014;102:366–385. doi: 10.1109/JPROC.2014.2299397. DOI

Zöchmann E., Hofer M., Lerch M., Blumenstein J., Sangodoyin S., Groll H., Pratschner S., Caban S., Bernadó D.L.L., Zemen T., et al. Statistical evaluation of delay and Doppler spread in 60 GHz vehicle-to-vehicle channels during overtaking; Proceedings of the APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC); Cartagena, Colombia. 10–14 September 2018; pp. 1–4.

Boeglen H., Hilt B., Lorenz P., Ledy J., Poussard A.M., Vauzelle R. A survey of V2V channel modeling for VANET simulations; Proceedings of the Eighth International Conference on Wireless On-Demand Network Systems and Services; Bardonecchia, Italy. 26–28 January 2011; pp. 117–123.

Tripp-Barba C., Urquiza-Aguiar L., Estrada J., Aguilar-Calderón J.A., Zaldívar-Colado A., Igartua M.A. Impact of packet error modeling in VANET simulations; Proceedings of the International Conference on Adaptive Science & Technology (ICAST); Ota, Nigeria. 29–31 October 2014; pp. 1–7.

Paier A., Karedal J., Czink N., Dumard C., Zemen T., Tufvesson F., Molisch A.F., Mecklenbräuker C.F. Characterization of Vehicle-to-Vehicle Radio Channels from Measurements at 5.2 GHz. Wirel. Pers. Commun. 2009;50:19–32. doi: 10.1007/s11277-008-9546-6. DOI

Ghiaasi G., Blazek T., Ashury M., Santos R.R., Mecklenbräuker C. Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios. Wirel. Commun. Mobile Comput. 2018 doi: 10.1155/2018/2423837. DOI

Hofer M., Xu Z., Zemen T. Real-time channel emulation of a geometry-based stochastic channel model on a SDR platform; Proceedings of the 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC); Hokkaido, Japan. 3–6 July 2017; pp. 1–5.

Hofer M., Xu Z., Vlastaras D., Schrenk B., Loeschenbrand D., Tufvesson F., Zemen T. Validation of a Real-Time Geometry-Based Stochastic Channel Model for Vehicular Scenarios; Proceedings of the 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–5.

Dreyer N., Moeller A., Baumgarten J., Mir Z.H., Kuerner T., Filali F. On Building Realistic Reference Scenarios for IEEE 802.11 p/LTE-Based Vehicular Network Evaluations; Proceedings of the 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–7.

Ai B., Cheng X., Kürner T., Zhong Z.D., Guan K., He R.S., Xiong L., Matolak D.W., Michelson D.G., Briso-Rodriguez C. Challenges toward wireless communications for high-speed railway. IEEE Trans. Intell. Transp. Syst. 2014;15:2143–2158. doi: 10.1109/TITS.2014.2310771. DOI

Acosta-Marum G., Ingram M.A. Six Time-and Frequency- Selective Empirical Channel Models for Vehicular Wireless LANs. IEEE Veh. Technol. Mag. 2007;2:4–11. doi: 10.1109/MVT.2008.917435. DOI

Rappaport T.S., MacCartney G.R., Samimi M.K., Sun S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015;63:3029–3056. doi: 10.1109/TCOMM.2015.2434384. DOI

Zöchmann E., Lerch M., Caban S., Mecklenbräuker C.F., Mecklenbrauker C.F., Rupp M. Directional evaluation of receive power, Rician K-factor and RMS delay spread obtained from power measurements of 60 GHz indoor channels; Proceedings of the APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC); Cairns, Australia. 19–23 September 2016; pp. 246–249.

Zöchmann E., Lerch M., Pratschner S., Nissel R., Caban S., Rupp M. Associating spatial information to directional millimeter wave channel measurements; Proceedings of the 86th Vehicular Technology Conference (VTC-Fall); Toronto, ON, Canada. 24–27 September 2017.

Ben-Dor E., Rappaport T.S., Qiao Y., Lauffenburger S.J. Millimeter-Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel Sounder; Proceedings of the 2011 GLOBECOM; Kathmandu, Nepal. 5–9 December 2011; pp. 1–6.

Blumenstein J., Prokes A., Chandra A., Mikulasek T., Marsalek R., Zemen T., Mecklenbräuker C.F. In-Vehicle Channel Measurement, Characterization, and Spatial Consistency Comparison of 3-11 GHz and 55-65 GHz Frequency Bands. IEEE Trans. Veh. Technol. 2017;66:3526–3537. doi: 10.1109/TVT.2016.2600101. DOI

Zöchmann E., Mecklenbräuker C.F., Lerch M., Pratschner S., Hofer M., Löschenbrand D., Blumenstein J., Sangodoyin S., Artner G., Caban S., et al. Measured Delay and Doppler Profiles of Overtaking Vehicles at 60 GHz; Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP); London, UK. 9–13 April 2018; pp. 1–5.

Saleh A., Valenzuela R. A Statistical Model for Indoor Multipath Propagation. IEEE J. Sel. Areas Commun. 1987;5:128–137. doi: 10.1109/JSAC.1987.1146527. DOI

Gustafson C., Haneda K., Wyne S., Tufvesson F. On mm-Wave Multipath Clustering and Channel Modeling. IEEE Trans. Antennas Propag. 2014;62:1445–1455. doi: 10.1109/TAP.2013.2295836. DOI

He R., Chen W., Ai B., Molisch A.F., Wang W., Zhong Z., Yu J., Sangodoyin S. On the Clustering of Radio Channel Impulse Responses Using Sparsity-Based Methods. IEEE Trans. Antennas Propag. 2016;64:2465–2474. doi: 10.1109/TAP.2016.2546953. DOI

Blazek T., Mecklenbräuker C., Smely D., Ghiaasi G., Ashury M. Vehicular Channel Models: A System Level Performance Analysis of Tapped Delay Line Models; Proceedings of the 15th International Conference on ITS Telecommunications (ITST); Warsaw, Poland. 29–31 May 2017; pp. 1–8.

Fernandez-Carames T.M., Gonzalez-Lopez M., Castedo L. FPGA-based vehicular channel emulator for evaluation of IEEE 802.11p transceivers; Proceedings of the 9th International Conference on Intelligent Transportation Systems; Lille, France. 20–22 October 2009; pp. 592–597.

Mecklenbräuker C.F., Gerstoft P., Zöchmann E. c–LASSO and its dual for sparse signal estimation from array data. Signal Process. 2017;130:204–216. doi: 10.1016/j.sigpro.2016.06.029. DOI

Tibshirani R.J., Taylor J. The solution path of the generalized lasso. Ann. Stat. 2011;39:1335–1371. doi: 10.1214/11-AOS878. DOI

Burnham K.P., Anderson D.R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Meth. Res. 2004;33:261–304. doi: 10.1177/0049124104268644. DOI

Tauböck G., Hlawatsch F. Compressed sensing based estimation of doubly selective channels using a sparsity-optimized basis expansion; Proceedings of the 2008 16th European Signal Processing Conference; Lausanne, Switzerland. 25–29 August 2008; pp. 1–5.

Tauböck G., Hlawatsch F., Eiwen D., Rauhut H. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE J. Sel. Top. Signal Process. 2010;4:255–271. doi: 10.1109/JSTSP.2010.2042410. DOI

Blazek T., Mecklenbräuker C. Sparse time-variant impulse response estimation for vehicular channels using the c-LASSO; Proceedings of the 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC); Montreal, QC, Canada. 8–13 October 2018.

Grant M., Boyd S. CVX: Matlab Software for Disciplined Convex Programming. [(accessed on 15 November 2018)]; Available online: http://cvxr.com/

Zöchmann E., Gerstoft P., Mecklenbräuker C.F. Density evolution of sparse source signals; Proceedings of the 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa); Pisa, Italy. 17–19 June 2015; pp. 124–128.

Samimi M.K., MacCartney G.R., Sun S., Rappaport T.S. 28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels; Proceedings of the 83rd Vehicular Technology Conference (VTC Spring); Nanjing, China. 15–18 May 2016; pp. 1–6.

Kim C., Sun X., Chiam L., Kannan B., Chin F., Garg H. Characterization of ultra-wideband channels for outdoor office environment; Proceedings of the Wireless Communications and Networking Conference; New Orleans, LA, USA. 13–17 March 2005; pp. 950–955.

Meijerink A., Molisch A.F. On the Physical Interpretation of the Saleh–Valenzuela Model and the Definition of Its Power Delay Profiles. IEEE Trans. Antennas Propag. 2014;62:4780–4793. doi: 10.1109/TAP.2014.2335812. DOI

Posada D., Buckley T.R., Thorne J. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. Syst. Biol. 2004;53:793–808. doi: 10.1080/10635150490522304. PubMed DOI

Sousa E.S., Jovanovic V.M., Daigneault C. Delay spread measurements for the digital cellular channel in Toronto. IEEE Trans. Veh. Technol. 1994;43:837–847. doi: 10.1109/25.330145. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Digitally-Compensated Wideband 60 GHz Test-Bed for Power Amplifier Predistortion Experiments

. 2021 Feb 20 ; 21 (4) : . [epub] 20210220

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...