Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30458763
PubMed Central
PMC6245592
DOI
10.1186/s12918-018-0611-9
PII: 10.1186/s12918-018-0611-9
Knihovny.cz E-zdroje
- Klíčová slova
- CFD, Flashing light enhancement, Mathematical modeling, Microalgae, Microalgae culture systems, Photosynthesis,
- MeSH
- biologické modely MeSH
- fotosyntéza * MeSH
- hydrodynamika * MeSH
- kultivační techniky * MeSH
- mikrořasy růst a vývoj fyziologie účinky záření MeSH
- počítačová simulace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Photosynthetic microalgae have been in the spotlight of biotechnological production (biofuels, lipids, etc), however, current barriers in mass cultivation of microalgae are limiting its successful industrialization. Therefore, a mathematical model integrating both the biological and hydrodynamical parts of the cultivation process may improve our understanding of relevant phenomena, leading to further optimization of the microalgae cultivation. RESULTS: We introduce a unified multidisciplinary simulation tool for microalgae culture systems, particularly the photobioreactors. Our approach describes changes of cell growth determined by dynamics of heterogeneous environmental conditions such as irradiation and mixing of the culture. Presented framework consists of (i) a simplified model of microalgae growth in a culture system (the advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition), (ii) the fluid dynamics (Navier-Stokes equations), and (iii) the irradiance field description (Beer-Lambert law). To validate the method, a simple case study leading to hydrodynamically induced fluctuating light conditions was chosen. The integration of computational fluid dynamics (ANSYS Fluent) revealed the inner property of the system, the flashing light enhancement phenomenon, known from experiments. CONCLUSION: Our physically accurate model of microalgae culture naturally exhibits features of real system, can be applied to any geometry of microalgae mass cultivation and thus is suitable for biotechnological applications.
Zobrazit více v PubMed
Su Y, Song K, Zhang P, Su Y, Cheng J, Chen X. Progress of microalgae biofuel’s commercialization. Renew Sust Energ Rev. 2017;74:402–11. doi: 10.1016/j.rser.2016.12.078. DOI
Burlew J. Algal Culture From Laboratory to Pilot Plant. Washington: Carnegie Institution of Washington; 1953.
Grobbelaar JU. Microalgal biomass production: challenges and realities. Photosynth Res. 2010;106(1):135–44. doi: 10.1007/s11120-010-9573-5. PubMed DOI
Ooms MD, Dinh CT, Sargent EH, Sinton D. Photon management for augmented photosynthesis. Nat Commun. 2016;7:12699. doi: 10.1038/ncomms12699. PubMed DOI PMC
Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Blackwell Publishing; 2008.
Chisti Y. Biodiesel from microalgae, biotechnology advancesbiodiesel from microalgae. Biotechnol Adv. 2007;25:294–3062. doi: 10.1016/j.biotechadv.2007.02.001. PubMed DOI
Bernardi A, Perin G, Sforza E, Galvanin F, Morosinotto T, Bezzo F. An identifiable state model to describe light intensity influence on microalgae growth. Ind Eng Chem Res. 2014;53(16):6738–49. doi: 10.1021/ie500523z. PubMed DOI PMC
Park S, Li Y. Integration of biological kinetics and computational fluid dynamics to model the growth of nannochloropsis salina in an open channel raceway. Biotech Bioeng. 2015;112(5):923–33. doi: 10.1002/bit.25509. PubMed DOI
Sato T, Yamada D, Hirabayashi S. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Convers Manag. 2010;51:31196–201. doi: 10.1016/j.enconman.2009.12.030. DOI
Muller-Feuga A, Guédes RL, Pruvost J. Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. J Biotechnol. 2003;103:153–63. doi: 10.1016/S0168-1656(03)00100-7. PubMed DOI
Bitog JP, Lee I-B, Lee C-G, Kim K-S, Hwang H-S, Hong S-W, Seo I-H, Kwon K-S, Mostafa E. Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Comput Electron Agric. 2011;76(2):131–47. doi: 10.1016/j.compag.2011.01.015. DOI
Bernard Olivier, Mairet Francis, Chachuat Benoît. Microalgae Biotechnology. Cham: Springer International Publishing; 2015. Modelling of Microalgae Culture Systems with Applications to Control and Optimization; pp. 59–87. PubMed
Kok B. Experiments on photosynthesis by chlorella in flashing light. In: Burlew J, editor. Algal Culture From Laboratory to Pilot Plant, vol. 600. Washington: Carnegie Institution of Washington; 1953.
Nedbal L, Tichý V, Xiong F, Grobbelaar JU. Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol. 1996;8:325–33. doi: 10.1007/BF02178575. DOI
Terry KL. Photosynthesis in modulated light: Quantitative dependence of photosynthetic enhancement on flashing rate. Biotech Bioeng. 1986;28:988–95. doi: 10.1002/bit.260280709. PubMed DOI
Cornet J-F, Dussap CG, Gros J-B, Binois C, Lasseur C. A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem Eng Sci. 1995;50:1489–500. doi: 10.1016/0009-2509(95)00022-W. DOI
Schugerl K, Bellgardt KH. Bioreaction Engineering, Modeling and Control. Berlin Heidelberg: Springer; 2000.
Beek WJ, Muttzal KMK, Heuven JWV. Transport Phenomena. Chichester: Wiley; 1999.
Alvarez-V ázquez LJ, Fernández FJ. Optimal control of bioreactor. Appl Math Comput. 2010;216:2559–75.
Fluent ANSYS. Theory guide. Ansys Inc. 2015.
Pruvost J, Legrand J, Legentilhomme P, Muller-Feuga A. Simulation of microalgae growth in limiting light conditions: Flow effect. AIChE J. 2002;48(5):1109–20. doi: 10.1002/aic.690480520. DOI
Han B-P, Virtanen M, Koponen J, Straškraba M. Effect of photoinhibition on algal photosynthesis: a dynamic model. J Plankton Res. 2000;22(5):865. doi: 10.1093/plankt/22.5.865. DOI
Kmeť T, Straškraba M, Mauersberger P. A mechanistic model of the adaptation of phytoplankton photosynthesis. Bull Math Biol. 1993;55:259–75. doi: 10.1007/BF02460883. DOI
Eilers PHC, Peeters JCH. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model. 1988;42(3):199–215. doi: 10.1016/0304-3800(88)90057-9. DOI
Eilers P, Peeters J. Dynamic behaviour of a model for photosynthesis and photoinhibition. Ecol Model. 1993;69(1-2):113–33. doi: 10.1016/0304-3800(93)90052-T. DOI
Papacek S, Celikovsky S, Stys D, Ruiz-León J. Bilinear system as modelling framework for analysis of microalgal growth. Kybernetika. 2007;43:1–20.
Papacek S, Matonoha C, Stumbauer V, Stys D. Modelling and simulation of photosynthetic microorganism growth: random walk vs. finite difference method. Math Comput Simul. 2012;82(10):2022–32. doi: 10.1016/j.matcom.2011.07.006. DOI
Wu X, Merchuk JC. A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem Eng Sci. 2001;56:3527–38. doi: 10.1016/S0009-2509(01)00048-3. DOI
Wu X, Merchuk JC. Simulation of algae growth in a bench-scale bubble column reactor. Biotech Bioeng. 2002;80(2):156–68. doi: 10.1002/bit.10350. PubMed DOI
Papacek S, Stumbauer V, Stys D, Petera K, Matonoha C. Growth impact of hydrodynamic dispersion in a couette–taylor bioreactor. Math Comput Model. 2011;54(7):1791–5. doi: 10.1016/j.mcm.2010.12.022. DOI
Rehak Branislav, Celikovsky Sergej, Papcek ¿t¿pÁn. Model for Photosynthesis and Photoinhibition: Parameter Identification Based on the Harmonic Irradiation $O_{2}$ Response Measurement. IEEE Transactions on Automatic Control. 2008;53(Special Issue):101–108. doi: 10.1109/TAC.2007.911345. DOI
Papacek S, Celikovsky S, Rehak B, Stys D. Experimental design for parameter estimation of two time-scale model of photosynthesis and photoinhibition in microalgae. Math Comput Simul. 2010;80(6):1302–9. doi: 10.1016/j.matcom.2009.06.033. DOI
Celikovsky S, Papacek S, Cervantes-Herrera A, Ruiz-Leon J. Singular perturbation based solution to optimal microalgal growth problem and its infinite time horizon analysis. IEEE Trans Autom Control. 2010;55(3):767–72. doi: 10.1109/TAC.2010.2040498. DOI
Succi S. The Lattice Boltzmann Equation. New York: Oxford University Press; 2001.
Bezzo F, Macchietto S, Pantelides CC. Computational issues in hybrid multizonal/computational fluid dynamics models. AIChE J. 2005;51(4):1169–77. doi: 10.1002/aic.10383. DOI
Bezzo F, Macchietto S, Pantelides CC. General hybrid multizonal/cfd approach for bioreactor modeling. AIChE J. 2003;49(8):2133–48. doi: 10.1002/aic.690490821. DOI
Štumbauer V, Petera K, Štys D. The lattice Boltzmann method in bioreactor design and simulation. Math Comput Model. 2013;57:1913–8. doi: 10.1016/j.mcm.2011.12.033. DOI
Čelikovský S. Procedure for estimation and reporting of uncertainty due to discretization in cfd applications. J Fluids Eng. 2008; 130(7). 10.1115/1.2960953.
Taylor GI. Stability of a viscous liquid containing between two rotating cylinders. Phil Trans R Soc. 1923;A223:289–343. doi: 10.1098/rsta.1923.0008. DOI
Goodrich JW. An unsteady time-asymptotic flow in the square driven cavity. Technical report tech. mem. 103141. NASA. 1990.
Bruneau C-H, Saad M. The 2d lid-driven cavity problem revisited. Comput Fluids. 2006;35:326–48. doi: 10.1016/j.compfluid.2004.12.004. DOI
Davis EA. Turbulence. In: Burlew J, editor. Algal Culture From Laboratory to Pilot Plant. Washington: Carnegie Institution of Washington; 1953.
Gudin C, Chaumont D. Cell fragility — the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol. 1991;38(2):145–51. doi: 10.1016/0960-8524(91)90146-B. DOI
Haut B, Amor HB, Coulon L, Jacquet A, Halloin V. Hydrodynamics and mass transfer in a couette–taylor bioreactor for the culture of animal cells. Chem Eng Sci. 2003;58(3):777–84. doi: 10.1016/S0009-2509(02)00607-3. DOI
Luo H-P, Kemoun A, Al-Dahhan MH, Sevilla JMF, Sánchez JLG, Camacho FG, Grima EM. Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: Carpt. Chem Eng Sci. 2003;58(12):2519–27. doi: 10.1016/S0009-2509(03)00098-8. DOI