Uric Acid and Xanthine Levels in Pregnancy Complicated by Gestational Diabetes Mellitus-The Effect on Adverse Pregnancy Outcomes

. 2018 Nov 21 ; 19 (11) : . [epub] 20181121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30469427

Grantová podpora
16-28040A Ministerstvo Zdravotnictví Ceské Republiky

Uric acid (UA) levels are associated with many diseases including those related to lifestyle. The aim of this study was to evaluate the influence of clinical and anthropometric parameters on UA and xanthine (X) levels during pregnancy and postpartum in women with physiological pregnancy and pregnancy complicated by gestational diabetes mellitus (GDM), and to evaluate their impact on adverse perinatal outcomes. A total of 143 participants were included. Analyte levels were determined by HPLC with ultraviolet detection (HPLC-UV). Several single-nucleotide polymorphisms (SNPs) in UA transporters were genotyped using commercial assays. UA levels were higher within GDM women with pre-gestational obesity, those in high-risk groups, and those who required insulin during pregnancy. X levels were higher in the GDM group during pregnancy and also postpartum. Positive correlations between UA and X levels with body mass index (BMI) and glycemia levels were found. Gestational age at delivery was negatively correlated with UA and X levels postpartum. Postpartum X levels were significantly higher in women who underwent caesarean sections. Our data support a possible link between increased UA levels and a high-risk GDM subtype. UA levels were higher among women whose glucose tolerance was severely disturbed. Mid-gestational UA and X levels were not linked to adverse perinatal outcomes.

Zobrazit více v PubMed

Maiuolo J., Oppedisano F., Gratteri S., Muscoli C., Mollace V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016;213:8–14. doi: 10.1016/j.ijcard.2015.08.109. PubMed DOI

Morgan E.J., Stewart C.P., Hopkins F.G. On the Anaerobic and Aerobic Oxidation of Xanthin and Hypoxanthin by Tissues and by Milk. Proc. R. Soc. Lond. B Biol. Sci. 1922;94:109–131. doi: 10.1098/rspb.1922.0047. DOI

Su J., Wei Y., Liu M., Liu T., Li J., Ji Y., Liang J. Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch. Pharm. Res. 2014;37:1336–1344. doi: 10.1007/s12272-014-0413-6. PubMed DOI

Hayden M.R., Tyagi S.C. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab. 2004;1:10. doi: 10.1186/1743-7075-1-10. PubMed DOI PMC

Onat A., Uyarel H., Hergenç G., Karabulut A., Albayrak S., Sari I., Yazici M., Keleş I. Serum uric acid is a determinant of metabolic syndrome in a population-based study. Am. J. Hypertens. 2006;19:1055–1062. doi: 10.1016/j.amjhyper.2006.02.014. PubMed DOI

Sui X., Church T.S., Meriwether R.A., Lobelo F., Blair S.N. Uric acid and the development of metabolic syndrome in women and men. Metabolism. 2008;57:845–852. doi: 10.1016/j.metabol.2008.01.030. PubMed DOI PMC

Costa A., Igualá I., Bedini J., Quintó L., Conget I. Uric acid concentration in subjects at risk of type 2 diabetes mellitus: Relationship to components of the metabolic syndrome. Metabolism. 2002;51:372–375. doi: 10.1053/meta.2002.30523. PubMed DOI

Ryo M., Nakamura T., Kihara S., Kumada M., Shibazaki S., Takahashi M., Nagai M., Matsuzawa Y., Funahashi T. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 2004;68:975–981. doi: 10.1253/circj.68.975. PubMed DOI

Köttgen A., Albrecht E., Teumer A., Vitart V., Krumsiek J., Hundertmark C., Pistis G., Ruggiero D., O’Seaghdha C.M., Haller T., et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013;45:145–154. doi: 10.1038/ng.2500. PubMed DOI PMC

Li S., Sanna S., Maschio A., Busonero F., Usala G., Mulas A., Lai S., Dei M., Orrù M., Albai G., et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3:e194. doi: 10.1371/journal.pgen.0030194. PubMed DOI PMC

Döring A., Gieger C., Mehta D., Gohlke H., Prokisch H., Coassin S., Fischer G., Henke K., Klopp N., Kronenberg F., et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 2008;40:430–436. doi: 10.1038/ng.107. PubMed DOI

Woodward O.M., Köttgen A., Coresh J., Boerwinkle E., Guggino W.B., Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA. 2009;106:10338–10342. doi: 10.1073/pnas.0901249106. PubMed DOI PMC

Chiefari E., Arcidiacono B., Foti D., Brunetti A. Gestational diabetes mellitus: An updated overview. J. Endocrinol. Investig. 2017;40:899–909. doi: 10.1007/s40618-016-0607-5. PubMed DOI

Association A.D. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2018;41:S13–S27. doi: 10.2337/dc18-S002. PubMed DOI

Catalano P.M., Ehrenberg H.M. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113:1126–1133. doi: 10.1111/j.1471-0528.2006.00989.x. PubMed DOI

Bellamy L., Casas J.P., Hingorani A.D., Williams D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet. 2009;373:1773–1779. doi: 10.1016/S0140-6736(09)60731-5. PubMed DOI

Kaaja R., Rönnemaa T. Gestational diabetes: Pathogenesis and consequences to mother and offspring. Rev. Diabet. Stud. 2008;5:194–202. doi: 10.1900/RDS.2008.5.194. PubMed DOI PMC

Group H.S.C.R. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Int. J. Gynaecol. Obstet. 2002;78:69–77. PubMed

Retnakaran R., Qi Y., Connelly P.W., Sermer M., Zinman B., Hanley A.J. Glucose intolerance in pregnancy and postpartum risk of metabolic syndrome in young women. J. Clin. Endocrinol. Metab. 2010;95:670–677. doi: 10.1210/jc.2009-1990. PubMed DOI PMC

Roberts J.M., Bodnar L.M., Lain K.Y., Hubel C.A., Markovic N., Ness R.B., Powers R.W. Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension. 2005;46:1263–1269. doi: 10.1161/01.HYP.0000188703.27002.14. PubMed DOI

Chang F.M., Chow S.N., Huang H.C., Hsieh F.J., Chen H.Y., Lee T.Y., Ouyang P.C., Chen Y.P. The placental transfer and concentration difference in maternal and neonatal serum uric acid at parturition: Comparison of normal pregnancies and gestosis. Biol. Res. Pregnancy Perinatol. 1987;8:35–39. PubMed

Rasika C., Samal S., Ghose S. Association of Elevated first Trimester Serum Uric Acid Levels with Development of GDM. J. Clin. Diagn. Res. 2014;8:OC01–OC05. doi: 10.7860/JCDR/2014/8063.5226. PubMed DOI PMC

Wolak T., Sergienko R., Wiznitzer A., Paran E., Sheiner E. High uric acid level during the first 20 weeks of pregnancy is associated with higher risk for gestational diabetes mellitus and mild preeclampsia. Hypertens. Pregnancy. 2012;31:307–315. doi: 10.3109/10641955.2010.507848. PubMed DOI

Şahin Aker S., Yüce T., Kalafat E., Seval M., Söylemez F. Association of first trimester serum uric acid levels gestational diabetes mellitus development. Turk. J. Obstet. Gynecol. 2016;13:71–74. doi: 10.4274/tjod.69376. PubMed DOI PMC

Güngör E.S., Danişman N., Mollamahmutoğlu L. Relationship between serum uric acid, creatinine, albumin and gestational diabetes mellitus. Clin. Chem. Lab. Med. 2006;44:974–977. doi: 10.1515/CCLM.2006.173. PubMed DOI

Laughon S.K., Catov J., Roberts J.M. Uric acid concentrations are associated with insulin resistance and birthweight in normotensive pregnant women. Am. J. Obstet. Gynecol. 2009;201:582.e1–582.e6. doi: 10.1016/j.ajog.2009.06.043. PubMed DOI PMC

Bainbridge S.A., Roberts J.M. Uric acid as a pathogenic factor in preeclampsia. Placenta. 2008;29(Suppl. A):S67–S72. doi: 10.1016/j.placenta.2007.11.001. PubMed DOI PMC

Laughon S.K., Catov J., Powers R.W., Roberts J.M., Gandley R.E. First trimester uric acid and adverse pregnancy outcomes. Am. J. Hypertens. 2011;24:489–495. doi: 10.1038/ajh.2010.262. PubMed DOI PMC

Livingston J.R., Payne B., Brown M., Roberts J.M., Côté A.M., Magee L.A., von Dadelszen P., Group P.S. Uric Acid as a predictor of adverse maternal and perinatal outcomes in women hospitalized with preeclampsia. J. Obstet. Gynaecol. Can. 2014;36:870–877. doi: 10.1016/S1701-2163(15)30435-7. PubMed DOI

Kumar N., Singh A.K., Maini B. Impact of maternal serum uric acid on perinatal outcome in women with hypertensive disorders of pregnancy: A prospective study. Pregnancy Hypertens. 2017;10:220–225. doi: 10.1016/j.preghy.2017.10.002. PubMed DOI

Thangaratinam S., Ismail K.M., Sharp S., Coomarasamy A., Khan K.S. Accuracy of serum uric acid in predicting complications of pre-eclampsia: A systematic review. BJOG. 2006;113:369–378. doi: 10.1111/j.1471-0528.2006.00908.x. PubMed DOI

Gao T., Zablith N.R., Burns D.H., Skinner C.D., Koski K.G. Second trimester amniotic fluid transferrin and uric acid predict infant birth outcomes. Prenat. Diagn. 2008;28:810–814. doi: 10.1002/pd.1981. PubMed DOI

Nasri K., Razavi M., Rezvanfar M.R., Mashhadi E., Chehrei A., Mohammadbeigi A. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women. Int. J. Crit. Illn. Inj. Sci. 2015;5:17–20. doi: 10.4103/2229-5151.152309. PubMed DOI PMC

Leng J., Wang L., Wang J., Li W., Liu H., Zhang S., Li L., Tian H., Xun P., Yang X., et al. Uric acid and diabetes risk among Chinese women with a history of gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2017;134:72–79. doi: 10.1016/j.diabres.2017.09.015. PubMed DOI PMC

Corrado F., Pintaudi B., D'Anna R., Santamaria A., Giunta L., Di Benedetto A. Perinatal outcome in a Caucasian population with gestational diabetes and preexisting diabetes first diagnosed in pregnancy. Diabetes Metab. 2016;42:122–125. doi: 10.1016/j.diabet.2015.11.007. PubMed DOI

Abbassi-Ghanavati M., Greer L.G., Cunningham F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009;114:1326–1331. doi: 10.1097/AOG.0b013e3181c2bde8. PubMed DOI

Stone T.W., Simmonds H.A. Purines: Basic and Clinical Aspects. Kluwer Academic; Dordrecht, The Netherlands: London, UK: 1991. 257p

Fang P., Li X., Luo J.J., Wang H., Yang X.F. A Double-edged Sword: Uric Acid and Neurological Disorders. Brain Disord. Ther. 2013;2:109. doi: 10.4172/2168-975X.1000109. PubMed DOI PMC

Sautin Y.Y., Johnson R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids. 2008;27:608–619. doi: 10.1080/15257770802138558. PubMed DOI PMC

Baldwin W., McRae S., Marek G., Wymer D., Pannu V., Baylis C., Johnson R.J., Sautin Y.Y. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–1269. doi: 10.2337/db10-0916. PubMed DOI PMC

Meshkani R., Zargari M., Larijani B. The relationship between uric acid and metabolic syndrome in normal glucose tolerance and normal fasting glucose subjects. Acta Diabetol. 2011;48:79–88. doi: 10.1007/s00592-010-0231-3. PubMed DOI

Dogan A., Yarlioglues M., Kaya M.G., Karadag Z., Dogan S., Ardic I., Dogdu O., Kilinc Y., Zencir C., Akpek M., et al. Effect of long-term and high-dose allopurinol therapy on endothelial function in normotensive diabetic patients. Blood Press. 2011;20:182–187. doi: 10.3109/08037051.2010.538977. PubMed DOI

Johnson R.J., Nakagawa T., Sanchez-Lozada L.G., Shafiu M., Sundaram S., Le M., Ishimoto T., Sautin Y.Y., Lanaspa M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307–3315. doi: 10.2337/db12-1814. PubMed DOI PMC

Sautin Y.Y., Nakagawa T., Zharikov S., Johnson R.J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell Physiol. 2007;293:C584–C596. doi: 10.1152/ajpcell.00600.2006. PubMed DOI

Tsushima Y., Nishizawa H., Tochino Y., Nakatsuji H., Sekimoto R., Nagao H., Shirakura T., Kato K., Imaizumi K., Takahashi H., et al. Uric acid secretion from adipose tissue and its increase in obesity. J. Biol. Chem. 2013;288:27138–27149. doi: 10.1074/jbc.M113.485094. PubMed DOI PMC

Cheung K.J., Tzameli I., Pissios P., Rovira I., Gavrilova O., Ohtsubo T., Chen Z., Finkel T., Flier J.S., Friedman J.M. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab. 2007;5:115–128. doi: 10.1016/j.cmet.2007.01.005. PubMed DOI

Fruehwald-Schultes B., Peters A., Kern W., Beyer J., Pfützner A. Serum leptin is associated with serum uric acid concentrations in humans. Metabolism. 1999;48:677–680. doi: 10.1016/S0026-0495(99)90163-4. PubMed DOI

Bedir A., Topbas M., Tanyeri F., Alvur M., Arik N. Leptin might be a regulator of serum uric acid concentrations in humans. Jpn. Heart J. 2003;44:527–536. doi: 10.1536/jhj.44.527. PubMed DOI

de Oliveira E.P., Burini R.C. High plasma uric acid concentration: Causes and consequences. Diabetol. Metab. Syndr. 2012;4:12. doi: 10.1186/1758-5996-4-12. PubMed DOI PMC

Matsuura F., Yamashita S., Nakamura T., Nishida M., Nozaki S., Funahashi T., Matsuzawa Y. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929–933. doi: 10.1016/S0026-0495(98)90346-8. PubMed DOI

Lanaspa M.A., Cicerchi C., Garcia G., Li N., Roncal-Jimenez C.A., Rivard C.J., Hunter B., Andrés-Hernando A., Ishimoto T., Sánchez-Lozada L.G., et al. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS ONE. 2012;7:e48801. doi: 10.1371/journal.pone.0048801. PubMed DOI PMC

Lanaspa M.A., Sanchez-Lozada L.G., Choi Y.J., Cicerchi C., Kanbay M., Roncal-Jimenez C.A., Ishimoto T., Li N., Marek G., Duranay M., et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 2012;287:40732–40744. doi: 10.1074/jbc.M112.399899. PubMed DOI PMC

Molęda P., Fronczyk A., Safranow K., Majkowska L. Is Uric Acid a Missing Link between Previous Gestational Diabetes Mellitus and the Development of Type 2 Diabetes at a Later Time of Life? PLoS ONE. 2016;11:e0154921. doi: 10.1371/journal.pone.0154921. PubMed DOI PMC

Modan M., Halkin H., Karasik A., Lusky A. Elevated serum uric acid—A facet of hyperinsulinaemia. Diabetologia. 1987;30:713–718. doi: 10.1007/BF00296994. PubMed DOI

Pacheco L.D., Costantine M.M., Hankins G.D.V. Clinical Pharmacology During Pregnancy. Academic Press; Cambridge, MA, USA: 2013. 2—Physiologic Changes During Pregnancy A2—Mattison, Donald R; pp. 5–16.

Hung T.H., Lo L.M., Chiu T.H., Li M.J., Yeh Y.L., Chen S.F., Hsieh T.T. A longitudinal study of oxidative stress and antioxidant status in women with uncomplicated pregnancies throughout gestation. Reprod. Sci. 2010;17:401–409. doi: 10.1177/1933719109359704. PubMed DOI

Vitart V., Rudan I., Hayward C., Gray N.K., Floyd J., Palmer C.N., Knott S.A., Kolcic I., Polasek O., Graessler J., et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008;40:437–442. doi: 10.1038/ng.106. PubMed DOI

Liu W.C., Hung C.C., Chen S.C., Lin M.Y., Chen L.I., Hwang D.Y., Chang J.M., Tsai J.C., Chen H.C., Hwang S.J. The rs1014290 polymorphism of the SLC2A9 gene is associated with type 2 diabetes mellitus in Han Chinese. Exp. Diabetes Res. 2011;2011:527520. doi: 10.1155/2011/527520. PubMed DOI PMC

Pleskacova A., Brejcha S., Pacal L., Kankova K., Tomandl J. Simultaneous Determination of Uric Acid, Xanthine and Hypoxanthine in Human Plasma and Serum by HPLC–UV: Uric Acid Metabolism Tracking. Chromatographia. 2016;80:529–536. doi: 10.1007/s10337-016-3208-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace