In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
30479757
PubMed Central
PMC6249234
DOI
10.1038/s41377-018-0090-1
PII: 90
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Carbon dots that exhibit near-infrared fluorescence (NIR CDs) are considered emerging nanomaterials for advanced biomedical applications with low toxicity and superior photostability and targeting compared to currently used photoluminescence agents. Despite progress in the synthesis of NIR CDs, there remains a key obstacle to using them as an in vivo theranostic agent. This work demonstrates that the newly developed sulfur and nitrogen codoped NIR CDs are highly efficient in photothermal therapy (PTT) in mouse models (conversion efficiency of 59%) and can be readily visualized by photoluminescence and photoacoustic imaging. The real theranostic potential of NIR CDs is enhanced by their unique biodistribution and targeting. Contrary to all other nanomaterials that have been tested in biomedicine, they are excreted through the body's renal filtration system. Moreover, after intravenous injection, NIR CDs are accumulated in tumor tissue via passive targeting, without any active species such as antibodies. Due to their accumulation in tumor tissue without the need for intratumor injection, high photothermal conversion, excellent optical and photoacoustic imaging performance, and renal excretion, the developed CDs are suitable for transfer to clinical biomedical practice.
Jilin Provincial Tumor Hospital Changchun China
School of Physical Sciences University of Chinese Academy of Sciences Beijing 100190 China
See more in PubMed
Cahill DG, et al. Nanoscale thermal transport. J. Appl. Phys. 2003;93:793–818. doi: 10.1063/1.1524305. DOI
O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209:171–176. doi: 10.1016/j.canlet.2004.02.004. PubMed DOI
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–1462. doi: 10.1126/science.1216210. PubMed DOI PMC
Xu MH, Wang LV. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006;77:041101. doi: 10.1063/1.2195024. DOI
Liu YL, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013;25:1353–1359. doi: 10.1002/adma.201204683. PubMed DOI
Smith AM, Mancini MC, Nie SM. Biomaging second window for in vivo imaging. Nat. Nanotechnol. 2009;4:710–711. doi: 10.1038/nnano.2009.326. PubMed DOI PMC
An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL. Zinc-adeninate metal–organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011;133:1220–1223. doi: 10.1021/ja109103t. PubMed DOI
Lyu Y, Xie C, Chechetka SA, Miyako E, Pu KY. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016;138:9049–9052. doi: 10.1021/jacs.6b05192. PubMed DOI
Roper DK, Ahn W, Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C. 2007;111:3636–3641. doi: 10.1021/jp064341w. PubMed DOI PMC
Nel AE, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI
Yang XC, et al. Drug delivery using nanoparticle-stabilized nanocapsules. Angew. Chem. Int. Ed. 2011;50:477–481. doi: 10.1002/anie.201005662. PubMed DOI PMC
Kuo CT, et al. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat. Commun. 2016;7:11468. doi: 10.1038/ncomms11468. PubMed DOI PMC
Sotiriou GA, et al. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 2014;24:2818–2827. doi: 10.1002/adfm.201303416. DOI
Maji SK, et al. Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv. Mater. 2014;26:5633–5638. doi: 10.1002/adma.201400831. PubMed DOI
Dou LT, Liu YS, Hong ZR, Li G, Yang Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 2015;115:12633–12665. doi: 10.1021/acs.chemrev.5b00165. PubMed DOI
Meager I, et al. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J. Am. Chem. Soc. 2013;135:11537–11540. doi: 10.1021/ja406934j. PubMed DOI
Wu CF, Chiu DT. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int Ed. 2013;52:3086–3109. doi: 10.1002/anie.201205133. PubMed DOI PMC
Wang L, et al. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem. Int. Ed. 2016;55:12306–12310. doi: 10.1002/anie.201607018. PubMed DOI
Jin GR, et al. Conjugated polymer nanodots as ultrastable long-term trackers to understand mesenchymal stem cell therapy in skin regeneration. Adv. Funct. Mater. 2015;25:4263–4273. doi: 10.1002/adfm.201501081. DOI
Zhao Q, et al. Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem. Sci. 2015;6:1825–1831. doi: 10.1039/C4SC03062A. PubMed DOI PMC
Chen JQ, et al. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv. Funct. Mater. 2016;26:8715–8725. doi: 10.1002/adfm.201603758. DOI
Pu KY, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014;9:233–239. doi: 10.1038/nnano.2013.302. PubMed DOI PMC
Zhang JJ, et al. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 2017;29:1604764. doi: 10.1002/adma.201604764. PubMed DOI
Jiang YY, Pu KY. Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles. Small. 2017;13:1700710. doi: 10.1002/smll.201700710. PubMed DOI
Xie C, Upputuri PK, Zhen X, Pramanik M, Pu KY. Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. Biomaterials. 2017;119:1–8. doi: 10.1016/j.biomaterials.2016.12.004. PubMed DOI
Michalet X, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. doi: 10.1126/science.1104274. PubMed DOI PMC
Zhang PY, et al. Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes: a way towards cancer therapy? Biomaterials. 2015;63:102–104. doi: 10.1016/j.biomaterials.2015.06.012. PubMed DOI
Yang K, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10:3318–3323. doi: 10.1021/nl100996u. PubMed DOI
Yang K, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2012;33:2206–2214. doi: 10.1016/j.biomaterials.2011.11.064. PubMed DOI
Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3:3707–3713. doi: 10.1021/nn900904h. PubMed DOI
Nie SM. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine. 2010;5:523–528. doi: 10.2217/nnm.10.23. PubMed DOI PMC
Huang XL, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano. 2013;7:5684–5693. doi: 10.1021/nn401911k. PubMed DOI PMC
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI
Lim SY, Shen W, Gao ZQ. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI
Hola K, et al. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9:590–603. doi: 10.1016/j.nantod.2014.09.004. DOI
Miao P, et al. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7:1586–1595. doi: 10.1039/C4NR05712K. PubMed DOI
Li HT, Kang ZH, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 2012;22:24230–24253. doi: 10.1039/c2jm34690g. DOI
Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11:1620–1636. doi: 10.1002/smll.201402648. PubMed DOI
Tian Z, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 2017;5:1700416. doi: 10.1002/adom.201700416. DOI
Li XM, Zhang SL, Kulinich SA, Liu YL, Zeng HB. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 2014;4:4976. doi: 10.1038/srep04976. DOI
Zhang XT, et al. Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence. RSC Adv. 2016;6:79620–79624. doi: 10.1039/C6RA11076B. DOI
Ding CQ, Zhu AW, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014;47:20–30. doi: 10.1021/ar400023s. PubMed DOI
Zhu SJ, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 2013;52:3953–3957. doi: 10.1002/anie.201300519. PubMed DOI
Lou Q, et al. Water-triggered luminescent “Nano-bombs” based on supra-(carbon nanodots) Adv. Mater. 2015;27:1389–1394. doi: 10.1002/adma.201403635. PubMed DOI
Qu SN, Wang XY, Lu QP, Liu XY, Wang LJ. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. 2012;51:12215–12218. doi: 10.1002/anie.201206791. PubMed DOI
Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 2015;25:4929–4947. doi: 10.1002/adfm.201501250. DOI
Lu SY, et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem. Int. Ed. 2017;56:6187–6191. doi: 10.1002/anie.201700757. PubMed DOI
Ge JC, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014;5:4596. doi: 10.1038/ncomms5596. PubMed DOI PMC
Lee C, et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics. 2016;6:2196–2208. doi: 10.7150/thno.16923. PubMed DOI PMC
Zheng M, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano. 2015;9:11455–11461. doi: 10.1021/acsnano.5b05575. PubMed DOI
Miao X, et al. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Appl. Mater. Interfaces. 2017;9:18549–18556. doi: 10.1021/acsami.7b04514. PubMed DOI
Qu SN, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 2016;28:3516–3521. doi: 10.1002/adma.201504891. PubMed DOI
Lu SY, et al. Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv. Mater. 2017;29:1603443. doi: 10.1002/adma.201603443. PubMed DOI
Pan LL, Sun S, Zhang L, Jiang K, Lin HW. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale. 2016;8:17350–17356. doi: 10.1039/C6NR05878G. PubMed DOI
Tang LB, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano. 2014;8:6312–6320. doi: 10.1021/nn501796r. PubMed DOI
Ge JC, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015;27:4169–4177. doi: 10.1002/adma.201500323. PubMed DOI
Li D, et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 2016;5:e16120. doi: 10.1038/lsa.2016.120. PubMed DOI PMC
Lan MH, et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 2017;10:3113–3123. doi: 10.1007/s12274-017-1528-0. DOI
Zheng M, et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces. 2016;8:23533–23541. doi: 10.1021/acsami.6b07453. PubMed DOI
Yeh TF, Teng CY, Chen SJ, Teng H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014;26:3297–3303. doi: 10.1002/adma.201305299. PubMed DOI
Qu D, Zheng M, Li J, Xie ZG, Sun ZC. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 2015;4:e364. doi: 10.1038/lsa.2015.137. DOI
Xu Z, et al. Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett. 2018;18:1498–1905. doi: 10.1021/acs.nanolett.7b05292. PubMed DOI
Lyu Y, et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano. 2016;10:4472–4481. doi: 10.1021/acsnano.6b00168. PubMed DOI
Li JC, Rao JH, Pu KY. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials. 2018;155:217–235. doi: 10.1016/j.biomaterials.2017.11.025. PubMed DOI PMC
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects. What is the appropriate target? Theranostics. 2014;4:81–89. doi: 10.7150/thno.7193. PubMed DOI PMC