Mechanical Performance of Glass-Based Geopolymer Matrix Composites Reinforced with Cellulose Fibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
642557
Horizon 2020 Framework Programme
PubMed
30486516
PubMed Central
PMC6316911
DOI
10.3390/ma11122395
PII: ma11122395
Knihovny.cz E-zdroje
- Klíčová slova
- cellulose fibers, cellulose modification, geopolymer composite, wastes incorporation,
- Publikační typ
- časopisecké články MeSH
Glass-based geopolymers, incorporating fly ash and borosilicate glass, were processed in conditions of high alkalinity (NaOH 10⁻13 M). Different formulations (fly ash and borosilicate in mixtures of 70⁻30 wt% and 30⁻70 wt%, respectively) and physical conditions (soaking time and relative humidity) were adopted. Flexural strength and fracture toughness were assessed for samples processed in optimized conditions by three-point bending and chevron notch testing, respectively. SEM was used to evaluate the fracture micromechanisms. Results showed that the geopolymerization efficiency is strongly influenced by the SiO₂/Al₂O₃ ratio and the curing conditions, especially the air humidity. The mechanical performances of the geopolymer samples were compared with those of cellulose fiber⁻geopolymer matrix composites with different fiber contents (1 wt%, 2 wt%, and 3 wt%). The composites exhibited higher strength and fracture resilience, with the maximum effect observed for the fiber content of 2 wt%. A chemical modification of the cellulose fiber surface was also observed.
Department of Industrial Engineering University of Padova 35131 Padova Italy
Institute of Physics of Materials Czech Academy of Science Žižkova 22 61662 Brno Czech Republic
Zobrazit více v PubMed
Palomo A., Grutzeck M.W., Blanco M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999;29:1323–1329. doi: 10.1016/S0008-8846(98)00243-9. DOI
Provis J.L., Bernal S.A. Alkali Activated Materials: State of the Art Report. Taylor Fr. 2014;13:125–144. doi: 10.1007/978-94-007-7672-2_5. DOI
Provis J.L., van Deventer J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications. Elsevier; Amsterdam, The Netherlands: 2009.
Duxson P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI
Živica V., Palou M.T., Križma M. Geopolymer Cements and Their Properties: A Review. Build. Res. J. 2015;61 doi: 10.2478/brj-2014-0007. DOI
Pan Z., Sanjayan J.G., Vijay R.B. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011;63:763–777. doi: 10.1680/macr.2011.63.10.763. DOI
Shi C., Jiménez A.F., Palomo A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011;41:750–763. doi: 10.1016/j.cemconres.2011.03.016. DOI
Hooton R.D. Bridging the gap between research and standards. Cem. Concr. Res. 2008;38:247–258. doi: 10.1016/j.cemconres.2007.09.012. DOI
Palomo A., Krivenko P., Garcia-Lodeiro I., Kavalerova E., Maltseva O., Fernandez-Jimenez A. A review on alkaline activation: New analytical perspectives. Mater. Constr. 2014;64:1–23. doi: 10.3989/mc.2014.00314. DOI
Toniolo N., Taveri G., Hurle K., Roether J.A.A., Ercole P., Dlouhý I., Boccaccini A.R.R. Fly-ash-based geopolymers: How the addition of recycled glass or red mud waste influences the structural and mechanical properties. J. Ceram. Sci. Technol. 2017;8:411–419. doi: 10.4416/JCST2017-00053. DOI
Fernández Jiménez A., Palomo A. Factors affecting early compressive strength of alkali activated fly ash (OPC-free) concrete. Mater. Constr. 2007;57:7–22.
Fernández-Jiménez A., Palomo A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem. Concr. Res. 2005;35:1984–1992. doi: 10.1016/j.cemconres.2005.03.003. DOI
Zhang Z., Provis J.L., Reid A., Wang H. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cem. Concr. Res. 2014;64:30–41. doi: 10.1016/j.cemconres.2014.06.004. DOI
Provis J.L., Yong C.Z., Duxson P., van Deventer J.S.J. Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2009;336:57–63. doi: 10.1016/j.colsurfa.2008.11.019. DOI
Fernández-Jiménez A., Palomo A. Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 2003;82:2259–2265. doi: 10.1016/S0016-2361(03)00194-7. DOI
Toniolo N., Boccaccini A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int. 2017;43:14545–14551. doi: 10.1016/j.ceramint.2017.07.221. DOI
Fernández-Jiménez A., Palomo A., Criado M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005;35:1204–1209. doi: 10.1016/j.cemconres.2004.08.021. DOI
Martin A., Pastor J.Y., Palomo A., Fernández Jiménez A. Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers) Constr. Build. Mater. 2015;93:1188–1196. doi: 10.1016/j.conbuildmat.2015.04.044. DOI
Pacheco-Torgal F., Abdollahnejad Z., Camões A.F., Jamshidi M., Ding Y. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr. Build. Mater. 2012;30:400–405. doi: 10.1016/j.conbuildmat.2011.12.017. DOI
Davidovits J. The Pyramids. Dorset Press; New York, NY, USA: 1990.
Davidovits J. Properties of Geopolymer Cements; Proceedings of the First International Conference on Alkaline Cements and Concretes; Kiev, Ukraine. 11–14 October 1994; pp. 131–149.
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., Van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI
Davidovits J. Geopolymer: Chemistry & Applications. Institut Géopolymère; Saint-Quentin, France: 2008.
Klinowski J. Nuclear magnetic resonance studies of zeolites. Prog. Nucl. Magn. Reson. Spectrosc. 1984;16:237–309. doi: 10.1016/0079-6565(84)80007-2. DOI
Torres-Carrasco M., Puertas F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015;90:397–408. doi: 10.1016/j.jclepro.2014.11.074. DOI
Torres-Carrasco M., Puertas F., Blanco-Varela M. XII Congreso Nacional de Materiales and XII Iberomat: Conference Proceedings. Instituto Universitario de Materiales; Alicante, Spain: 2012. Preparación de cementos alcalinos a partir de residuos vítreos. Solubilidad de residuos vítreos en medios fuertemente básicos.
Torres-Carrasco M., Rodríguez-Puertas C., Del Mar Alonso M., Puertas F. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Boletín de la Sociedad Española de Cerámica y Vidrio. 2015;54:45–57. doi: 10.1016/j.bsecv.2015.03.004. DOI
Puertas F., Torres-Carrasco M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem. Concr. Res. 2014;57:95–104. doi: 10.1016/j.cemconres.2013.12.005. DOI
Chinnam R.K., Francis A.A., Will J., Bernardo E., Boccaccini A.R. Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. J. Non-Cryst. Solids. 2013;365:63–74. doi: 10.1016/j.jnoncrysol.2012.12.006. DOI
Taveri G., Tousek J., Bernardo E., Toniolo N., Boccaccini A.R.R., Dlouhy I. Proving the role of boron in the structure of fly-ash/borosilicate glass based geopolymers. Mater. Lett. 2017;200:105–108. doi: 10.1016/j.matlet.2017.04.107. DOI
Côrtes Pires E.F., Campinho de Azevedo C.M., Pimenta A.R., da Silva F.J., Darwish F.A.I. Fracture Properties of Geopolymer Concrete Based on Metakaolin, Fly Ash and Rice Rusk Ash. Mater. Res. 2017;20:630–636. doi: 10.1590/1980-5373-mr-2016-0974. DOI
Dias D.P., Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005;27:49–54. doi: 10.1016/j.cemconcomp.2004.02.044. DOI
Oderji S.Y., Chen B., Taseer S., Jaffar A. Effects of relative humidity on the properties of fly ash-based geopolymers. Constr. Build. Mater. 2017;153:268–273. doi: 10.1016/j.conbuildmat.2017.07.115. DOI
García-Mejía T.A., de Lourdes Chávez-García M. Compressive Strength of Metakaolin-Based Geopolymers: Influence of KOH Concentration, Temperature, Time and Relative Humidity. Mater. Sci. Appl. 2016;7:772–791. doi: 10.4236/msa.2016.711060. DOI
Criado M., Fernández Jiménez A., Sobrados I., Palomo A., Sanz J. Effect of relative humidity on the reaction products of alkali activated fly ash. J. Eur. Ceram. Soc. 2012;32:2799–2807. doi: 10.1016/j.jeurceramsoc.2011.11.036. DOI
Yan S., He P., Jia D., Yang Z., Duan X., Wang S., Zhou Y. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites. Ceram. Int. 2016;42:7837–7843. doi: 10.1016/j.ceramint.2016.01.197. DOI
Assaaedi H., Alomayri T., Shaikh A., Low I. Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. J. Adv. Cermics. 2015;4:272–281. doi: 10.1007/s40145-015-0161-1. DOI
Shaikh F.U.A. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 2013;50:674–682. doi: 10.1016/j.matdes.2013.03.063. DOI
Yuan J., He P., Jia D., Yan S., Cai D., Xu L., Yang Z., Duan X., Wang S., Zhou Y. SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber. Ceram. Int. 2016;42:5345–5352. doi: 10.1016/j.ceramint.2015.12.067. DOI
Sá Ribeiro R.A., Sá Ribeiro M.G., Kriven W.M. Review of particle- and fiber-reinforced metakaolin-based geopolymer composites. J. Ceram. Sci. Technol. 2017;8:307–321. doi: 10.4416/JCST2017-00048. DOI
Alomayri T., Shaikh F.U.A., Low I.M. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B Eng. 2013;50:1–6. doi: 10.1016/j.compositesb.2013.01.013. DOI
Alomayri T., Low I.M. Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. J. Asian Ceram. Soc. 2013;1:30–34. doi: 10.1016/j.jascer.2013.01.002. DOI
Alomayri T., Shaikh F.U.A., Low I.M. Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites. J. Mater. Sci. 2013;48:6746–6752. doi: 10.1007/s10853-013-7479-2. DOI
Dlouhý I., Boccaccini A.R. Reliability of the chevron notch technique for fracture toughness determination in glass composites reinforced by continuous fibres. Scr. Mater. 2001;44:531–537. doi: 10.1016/S1359-6462(00)00601-1. DOI
Abubakar M., Mat Yajid M.A., Ahmad N. Comparison of Weibull and normal probability distribution of flexural strength of dense and porous fired clay. J. Teknol. 2016;78:73–78. doi: 10.11113/jt.v78.6456. DOI
Sahin Z., Ergun G., Author C. The Assessment of Some Physical and Mechanical Properties of PMMA Added Different Forms of Nano-ZrO 2. J. Dent. Oral. Heal. 2017;3:64–74.
Nicholson C., Murray B., Fletcher R.A., Brew D.R.M., MacKenzie K.J.D., Schmuker M. Geopolymer, Green Chemistry and Sustainable Development Solutions. Geopolymer Institute; Saint-Quentin, France: 2005. Novel geopolymer materials containing borate structural units.
Xu H., van Deventer J.S.J. Geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI
Weng L., Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems. J. Mater. Sci. 2007;42:2997–3006. doi: 10.1007/s10853-006-0820-2. DOI
Weng L., Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II-High Si/Al ratio systems. J. Mater. Sci. 2007;42:3007–3014. doi: 10.1007/s10853-006-0820-2. DOI
Trochez J.J., De Gutiérrez R.M., Rivera J., Bernal S.A. Synthesis of Geopolymer from Spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 Molar Ratios. Mater. Constr. 2015;65:1–11. doi: 10.3989/mc.2015.00814. DOI
Wang Y. Ph.D. Thesis. Georgia Institute of Technology; Atlanta, GA, USA: 2008. Cellulose Fiber Dissolution in Sodium Hydroxide Solution at Low Temperature: Dissolution Kinetics and Solubility Improvement.
Tonoli G.H.D., Rodrigues Filho U.P., Savastano H., Bras J., Belgacem M.N., Rocco Lahr F.A. Cellulose modified fibres in cement based composites. Compos. Part A Appl. Sci. Manuf. 2009;40:2046–2053. doi: 10.1016/j.compositesa.2009.09.016. DOI
Merrill R., Spencer R. Sorption of Sodium Silicates and Silica Sols by Cellulose Fibers. Ind. Eng. Chem. 1950;42:744–747. doi: 10.1021/ie50484a046. DOI