Mechanical Performance of Glass-Based Geopolymer Matrix Composites Reinforced with Cellulose Fibers

. 2018 Nov 28 ; 11 (12) : . [epub] 20181128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30486516

Grantová podpora
642557 Horizon 2020 Framework Programme

Glass-based geopolymers, incorporating fly ash and borosilicate glass, were processed in conditions of high alkalinity (NaOH 10⁻13 M). Different formulations (fly ash and borosilicate in mixtures of 70⁻30 wt% and 30⁻70 wt%, respectively) and physical conditions (soaking time and relative humidity) were adopted. Flexural strength and fracture toughness were assessed for samples processed in optimized conditions by three-point bending and chevron notch testing, respectively. SEM was used to evaluate the fracture micromechanisms. Results showed that the geopolymerization efficiency is strongly influenced by the SiO₂/Al₂O₃ ratio and the curing conditions, especially the air humidity. The mechanical performances of the geopolymer samples were compared with those of cellulose fiber⁻geopolymer matrix composites with different fiber contents (1 wt%, 2 wt%, and 3 wt%). The composites exhibited higher strength and fracture resilience, with the maximum effect observed for the fiber content of 2 wt%. A chemical modification of the cellulose fiber surface was also observed.

Zobrazit více v PubMed

Palomo A., Grutzeck M.W., Blanco M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999;29:1323–1329. doi: 10.1016/S0008-8846(98)00243-9. DOI

Provis J.L., Bernal S.A. Alkali Activated Materials: State of the Art Report. Taylor Fr. 2014;13:125–144. doi: 10.1007/978-94-007-7672-2_5. DOI

Provis J.L., van Deventer J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications. Elsevier; Amsterdam, The Netherlands: 2009.

Duxson P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI

Živica V., Palou M.T., Križma M. Geopolymer Cements and Their Properties: A Review. Build. Res. J. 2015;61 doi: 10.2478/brj-2014-0007. DOI

Pan Z., Sanjayan J.G., Vijay R.B. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011;63:763–777. doi: 10.1680/macr.2011.63.10.763. DOI

Shi C., Jiménez A.F., Palomo A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011;41:750–763. doi: 10.1016/j.cemconres.2011.03.016. DOI

Hooton R.D. Bridging the gap between research and standards. Cem. Concr. Res. 2008;38:247–258. doi: 10.1016/j.cemconres.2007.09.012. DOI

Palomo A., Krivenko P., Garcia-Lodeiro I., Kavalerova E., Maltseva O., Fernandez-Jimenez A. A review on alkaline activation: New analytical perspectives. Mater. Constr. 2014;64:1–23. doi: 10.3989/mc.2014.00314. DOI

Toniolo N., Taveri G., Hurle K., Roether J.A.A., Ercole P., Dlouhý I., Boccaccini A.R.R. Fly-ash-based geopolymers: How the addition of recycled glass or red mud waste influences the structural and mechanical properties. J. Ceram. Sci. Technol. 2017;8:411–419. doi: 10.4416/JCST2017-00053. DOI

Fernández Jiménez A., Palomo A. Factors affecting early compressive strength of alkali activated fly ash (OPC-free) concrete. Mater. Constr. 2007;57:7–22.

Fernández-Jiménez A., Palomo A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem. Concr. Res. 2005;35:1984–1992. doi: 10.1016/j.cemconres.2005.03.003. DOI

Zhang Z., Provis J.L., Reid A., Wang H. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cem. Concr. Res. 2014;64:30–41. doi: 10.1016/j.cemconres.2014.06.004. DOI

Provis J.L., Yong C.Z., Duxson P., van Deventer J.S.J. Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2009;336:57–63. doi: 10.1016/j.colsurfa.2008.11.019. DOI

Fernández-Jiménez A., Palomo A. Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 2003;82:2259–2265. doi: 10.1016/S0016-2361(03)00194-7. DOI

Toniolo N., Boccaccini A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int. 2017;43:14545–14551. doi: 10.1016/j.ceramint.2017.07.221. DOI

Fernández-Jiménez A., Palomo A., Criado M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005;35:1204–1209. doi: 10.1016/j.cemconres.2004.08.021. DOI

Martin A., Pastor J.Y., Palomo A., Fernández Jiménez A. Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers) Constr. Build. Mater. 2015;93:1188–1196. doi: 10.1016/j.conbuildmat.2015.04.044. DOI

Pacheco-Torgal F., Abdollahnejad Z., Camões A.F., Jamshidi M., Ding Y. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr. Build. Mater. 2012;30:400–405. doi: 10.1016/j.conbuildmat.2011.12.017. DOI

Davidovits J. The Pyramids. Dorset Press; New York, NY, USA: 1990.

Davidovits J. Properties of Geopolymer Cements; Proceedings of the First International Conference on Alkaline Cements and Concretes; Kiev, Ukraine. 11–14 October 1994; pp. 131–149.

Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., Van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI

Davidovits J. Geopolymer: Chemistry & Applications. Institut Géopolymère; Saint-Quentin, France: 2008.

Klinowski J. Nuclear magnetic resonance studies of zeolites. Prog. Nucl. Magn. Reson. Spectrosc. 1984;16:237–309. doi: 10.1016/0079-6565(84)80007-2. DOI

Torres-Carrasco M., Puertas F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015;90:397–408. doi: 10.1016/j.jclepro.2014.11.074. DOI

Torres-Carrasco M., Puertas F., Blanco-Varela M. XII Congreso Nacional de Materiales and XII Iberomat: Conference Proceedings. Instituto Universitario de Materiales; Alicante, Spain: 2012. Preparación de cementos alcalinos a partir de residuos vítreos. Solubilidad de residuos vítreos en medios fuertemente básicos.

Torres-Carrasco M., Rodríguez-Puertas C., Del Mar Alonso M., Puertas F. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Boletín de la Sociedad Española de Cerámica y Vidrio. 2015;54:45–57. doi: 10.1016/j.bsecv.2015.03.004. DOI

Puertas F., Torres-Carrasco M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem. Concr. Res. 2014;57:95–104. doi: 10.1016/j.cemconres.2013.12.005. DOI

Chinnam R.K., Francis A.A., Will J., Bernardo E., Boccaccini A.R. Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. J. Non-Cryst. Solids. 2013;365:63–74. doi: 10.1016/j.jnoncrysol.2012.12.006. DOI

Taveri G., Tousek J., Bernardo E., Toniolo N., Boccaccini A.R.R., Dlouhy I. Proving the role of boron in the structure of fly-ash/borosilicate glass based geopolymers. Mater. Lett. 2017;200:105–108. doi: 10.1016/j.matlet.2017.04.107. DOI

Côrtes Pires E.F., Campinho de Azevedo C.M., Pimenta A.R., da Silva F.J., Darwish F.A.I. Fracture Properties of Geopolymer Concrete Based on Metakaolin, Fly Ash and Rice Rusk Ash. Mater. Res. 2017;20:630–636. doi: 10.1590/1980-5373-mr-2016-0974. DOI

Dias D.P., Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005;27:49–54. doi: 10.1016/j.cemconcomp.2004.02.044. DOI

Oderji S.Y., Chen B., Taseer S., Jaffar A. Effects of relative humidity on the properties of fly ash-based geopolymers. Constr. Build. Mater. 2017;153:268–273. doi: 10.1016/j.conbuildmat.2017.07.115. DOI

García-Mejía T.A., de Lourdes Chávez-García M. Compressive Strength of Metakaolin-Based Geopolymers: Influence of KOH Concentration, Temperature, Time and Relative Humidity. Mater. Sci. Appl. 2016;7:772–791. doi: 10.4236/msa.2016.711060. DOI

Criado M., Fernández Jiménez A., Sobrados I., Palomo A., Sanz J. Effect of relative humidity on the reaction products of alkali activated fly ash. J. Eur. Ceram. Soc. 2012;32:2799–2807. doi: 10.1016/j.jeurceramsoc.2011.11.036. DOI

Yan S., He P., Jia D., Yang Z., Duan X., Wang S., Zhou Y. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites. Ceram. Int. 2016;42:7837–7843. doi: 10.1016/j.ceramint.2016.01.197. DOI

Assaaedi H., Alomayri T., Shaikh A., Low I. Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. J. Adv. Cermics. 2015;4:272–281. doi: 10.1007/s40145-015-0161-1. DOI

Shaikh F.U.A. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 2013;50:674–682. doi: 10.1016/j.matdes.2013.03.063. DOI

Yuan J., He P., Jia D., Yan S., Cai D., Xu L., Yang Z., Duan X., Wang S., Zhou Y. SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber. Ceram. Int. 2016;42:5345–5352. doi: 10.1016/j.ceramint.2015.12.067. DOI

Sá Ribeiro R.A., Sá Ribeiro M.G., Kriven W.M. Review of particle- and fiber-reinforced metakaolin-based geopolymer composites. J. Ceram. Sci. Technol. 2017;8:307–321. doi: 10.4416/JCST2017-00048. DOI

Alomayri T., Shaikh F.U.A., Low I.M. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B Eng. 2013;50:1–6. doi: 10.1016/j.compositesb.2013.01.013. DOI

Alomayri T., Low I.M. Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. J. Asian Ceram. Soc. 2013;1:30–34. doi: 10.1016/j.jascer.2013.01.002. DOI

Alomayri T., Shaikh F.U.A., Low I.M. Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites. J. Mater. Sci. 2013;48:6746–6752. doi: 10.1007/s10853-013-7479-2. DOI

Dlouhý I., Boccaccini A.R. Reliability of the chevron notch technique for fracture toughness determination in glass composites reinforced by continuous fibres. Scr. Mater. 2001;44:531–537. doi: 10.1016/S1359-6462(00)00601-1. DOI

Abubakar M., Mat Yajid M.A., Ahmad N. Comparison of Weibull and normal probability distribution of flexural strength of dense and porous fired clay. J. Teknol. 2016;78:73–78. doi: 10.11113/jt.v78.6456. DOI

Sahin Z., Ergun G., Author C. The Assessment of Some Physical and Mechanical Properties of PMMA Added Different Forms of Nano-ZrO 2. J. Dent. Oral. Heal. 2017;3:64–74.

Nicholson C., Murray B., Fletcher R.A., Brew D.R.M., MacKenzie K.J.D., Schmuker M. Geopolymer, Green Chemistry and Sustainable Development Solutions. Geopolymer Institute; Saint-Quentin, France: 2005. Novel geopolymer materials containing borate structural units.

Xu H., van Deventer J.S.J. Geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI

Weng L., Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems. J. Mater. Sci. 2007;42:2997–3006. doi: 10.1007/s10853-006-0820-2. DOI

Weng L., Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II-High Si/Al ratio systems. J. Mater. Sci. 2007;42:3007–3014. doi: 10.1007/s10853-006-0820-2. DOI

Trochez J.J., De Gutiérrez R.M., Rivera J., Bernal S.A. Synthesis of Geopolymer from Spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 Molar Ratios. Mater. Constr. 2015;65:1–11. doi: 10.3989/mc.2015.00814. DOI

Wang Y. Ph.D. Thesis. Georgia Institute of Technology; Atlanta, GA, USA: 2008. Cellulose Fiber Dissolution in Sodium Hydroxide Solution at Low Temperature: Dissolution Kinetics and Solubility Improvement.

Tonoli G.H.D., Rodrigues Filho U.P., Savastano H., Bras J., Belgacem M.N., Rocco Lahr F.A. Cellulose modified fibres in cement based composites. Compos. Part A Appl. Sci. Manuf. 2009;40:2046–2053. doi: 10.1016/j.compositesa.2009.09.016. DOI

Merrill R., Spencer R. Sorption of Sodium Silicates and Silica Sols by Cellulose Fibers. Ind. Eng. Chem. 1950;42:744–747. doi: 10.1021/ie50484a046. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...