Inhalation of ZnO Nanoparticles: Splice Junction Expression and Alternative Splicing in Mice
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30500950
PubMed Central
PMC6390655
DOI
10.1093/toxsci/kfy288
PII: 5220776
Knihovny.cz E-zdroje
- Klíčová slova
- alternative splicing, inhalation, splice junction expression, zinc oxide nanoparticles,
- MeSH
- alternativní sestřih účinky léků MeSH
- aplikace inhalační MeSH
- apoptóza účinky léků MeSH
- buněčná imunita účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- exprese genu účinky léků MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice toxicita MeSH
- oprava DNA účinky léků MeSH
- oxid zinečnatý toxicita MeSH
- oxidační stres účinky léků MeSH
- plíce metabolismus patologie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid zinečnatý MeSH
Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
Zobrazit více v PubMed
Adamcakova-Dodd A., Monick M. M., Powers L. S., Gibson-Corley K. N., Thorne P. S. (2015). Effects of prenatal inhalation exposure to copper nanoparticles on murine dams and offspring. Part. Fibre Toxicol. 12, 30. PubMed PMC
Adamcakova-Dodd A., Stebounova L. V., Kim J. S., Vorrink S. U., Ault A. P., O’Shaughnessy P. T., Grassian V. H., Thorne P. S. (2014). Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fibre Toxicol. 11, 15.. PubMed PMC
Arnér E. S. J. (2009). Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functions. Biochim. Biophys. Acta 1790, 495–526. PubMed
Bide R. W., Armour S. J., Yee E. (2000). Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. J. Appl. Toxicol. 20, 273–290. PubMed
Cebula M., Schmidt E. E., Arnér E. S. J. (2015). TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23, 823–853. PubMed PMC
Chen J.-K., Ho C.-C., Chang H., Lin J.-F., Yang C. S., Tsai M.-H., Tsai H.-T., Lin P. (2015). Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice. Nanotoxicology 9, 43–53. PubMed
Cho W.-S., Duffin R., Howie S. E. M., Scotton C. J., Wallace W. A. H., Macnee W., Bradley M., Megson I. L., Donaldson K. (2011). Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 8, 27.. PubMed PMC
Cho W.-S., Duffin R., Poland C. A., Howie S. E. M., MacNee W., Bradley M., Megson I. L., Donaldson K. (2010). Metal oxide nanoparticles induce unique inflammatory footprints in the lung: Important implications for nanoparticle testing. Environ. Health Perspect. 118, 1699–1706. PubMed PMC
Cho W.-S., Duffin R., Thielbeer F., Bradley M., Megson I. L., MacNee W., Poland C. A., Tran C. L., Donaldson K. (2012). Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol. Sci. 126, 469–477. PubMed
Chuang H.-C., Juan H.-T., Chang C.-N., Yan Y.-H., Yuan T.-H., Wang J.-S., Chen H.-C., Hwang Y.-H., Lee C.-H., Cheng T.-J. (2014). Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology 8, 593–604. PubMed
Cooper R. (2008). Zinc toxicology following particulate inhalation. Indian J. Occup. Environ. Med. 12, 10.. PubMed PMC
Cosma G., Fulton H., DeFeo T., Gordon T. (1992). Rat lung metallothionein and heme oxygenase gene expression following ozone and zinc oxide exposure. Toxicol. Appl. Pharmacol. 117, 75–80. PubMed
Cui S., Chesson C., Hope R. (1993). Genetic variation within and between strains of outbred Swiss mice. Lab. Anim. 27, 116–123. PubMed
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. PubMed PMC
Fukui H., Iwahashi H., Endoh S., Nishio K., Yoshida Y., Hagihara Y., Horie M. (2015). Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles. J. Occup. Health 57, 118–125. PubMed
Gilbert B., Fakra S. C., Xia T., Pokhrel S., Mädler L., Nel A. E. (2012). The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6, 4921–4930. PubMed PMC
Hadian K., Krappmann D. (2011). Signals from the nucleus: Activation of NF-B by cytosolic ATM in the DNA damage response. Sci. Signal. 4, pe2. PubMed
Horie M., Yoshiura Y., Izumi H., Oyabu T., Tomonaga T., Okada T., Lee B.-W., Myojo T., Kubo M., Shimada M., et al. (2016). Comparison of the pulmonary oxidative stress caused by intratracheal instillation and inhalation of NiO nanoparticles when equivalent amounts of NiO are retained in the lung. Antioxidants (Basel, Switzerland) 5, pii: E4. PubMed PMC
Kao Y.-Y., Chen Y.-C., Cheng T.-J., Chiung Y.-M., Liu P.-S. (2012). Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol. Sci. 125, 462–472. PubMed
Kendall M., Ding P., Kendall K. (2011). Particle and nanoparticle interactions with fibrinogen: The importance of aggregation in nanotoxicology. Nanotoxicology 5, 55–65. PubMed
Lai X., Zhao H., Zhang Y., Guo K., Xu Y., Chen S., Zhang J. (2018). Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci. Rep. 8, 4499. PubMed PMC
Larsen S. T., Jackson P., Poulsen S. S., Levin M., Jensen K. A., Wallin H., Nielsen G. D., Koponen I. K. (2016). Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles. Nanotoxicology 10, 1254–1262. PubMed PMC
Li Q., Hu X., Bai Y., Alattar M., Ma D., Cao Y., Hao Y., Wang L., Jiang C. (2013). The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem. Toxicol. 60, 213–217. PubMed
Li Y., Rao X., Mattox W. W., Amos C. I., Liu B. (2015). RNA-seq analysis of differential splice junction usage and intron retentions by DEXSeq. PLoS One 10, e0136653.. PubMed PMC
Liberda E. N., Cuevas A. K., Qu Q., Chen L. C. (2014). The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal. Toxicol. 26, 588–597. PubMed PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. PubMed
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. PubMed PMC
Luyts K., Smulders S., Napierska D., Van Kerckhoven S., Poels K., Scheers H., Hemmeryckx B., Nemery B., Hoylaerts M. F., Hoet P. H. M. (2014). Pulmonary and hemostatic toxicity of multi-walled carbon nanotubes and zinc oxide nanoparticles after pulmonary exposure in Bmal1 knockout mice. Part. Fibre Toxicol. 11, 61. PubMed PMC
Madl A. K., Plummer L. E., Carosino C., Pinkerton K. E. (2014). Nanoparticles, lung injury, and the role of oxidant stress. Annu. Rev. Physiol. 76, 447–465. PubMed PMC
Mercer R. R., Scabilloni J., Wang L., Kisin E., Murray A. R., Schwegler-Berry D., Shvedova A. A., Castranova V. (2008). Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L87–L97. PubMed
Mitchell L. A., Gao J., Wal R. V., Gigliotti A., Burchiel S. W., McDonald J. D. (2007). Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203–214. PubMed
Monsé C., Hagemeyer O., Raulf M., Jettkant B., van Kampen V., Kendzia B., Gering V., Kappert G., Weiss T., Ulrich N., et al. (2018). Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part. Fibre Toxicol. 15, 8. PubMed PMC
Morimoto Y., Izumi H., Yoshiura Y., Tomonaga T., Oyabu T., Myojo T., Kawai K., Yatera K., Shimada M., Kubo M., et al. (2016). Evaluation of pulmonary toxicity of zinc oxide nanoparticles following inhalation and intratracheal instillation. Int. J. Mol. Sci. 17, 1241. PubMed PMC
Morimoto Y., Oyabu T., Ogami A., Myojo T., Kuroda E., Hirohashi M., Shimada M., Lenggoro W., Okuyama K., Tanaka I. (2011). Investigation of gene expression of MMP-2 and TIMP-2 mRNA in rat lung in inhaled nickel oxide and titanium dioxide nanoparticles. Ind. Health 49, 344–352. PubMed
Nalvarte I., Damdimopoulos A. E., Ruegg J., Spyrou G. (2015). The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion. Biosci. Rep. 35, e00269. PubMed PMC
Présumé M., Simon-Deckers A., Tomkiewicz-Raulet C., Le Grand B., Tran Van Nhieu J., Beaune G., Duruphty O., Doucet J., Coumoul X., Pairon J.-C., et al. (2016). Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology 10, 1535–1544. PubMed
Reed R. B., Ladner D. A., Higgins C. P., Westerhoff P., Ranville J. F. (2012). Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ. Toxicol. Chem. 31, 93–99. PubMed PMC
Saptarshi S. R., Feltis B. N., Wright P. F., Lopata A. L. (2015). Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. J. Nanobiotechnol. 13, 6. PubMed PMC
Shen S., Park J. W., Lu Z., Lin L., Henry M. D., Wu Y. N., Zhou Q., Xing Y. (2014). rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl. Acad. Sci. 111, E5593–E5601. PubMed PMC
Shkreta L., Chabot B. (2015). The RNA splicing response to DNA damage. Biomolecules 5, 2935–2977. PubMed PMC
Shvedova A. A., Kisin E. R., Yanamala N., Farcas M. T., Menas A. L., Williams A., Fournier P. M., Reynolds J. S., Gutkin D. W., Star A., et al. (2015). Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 13, 28. PubMed PMC
Storey J. D., Tibshirani R. (2003). Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U S A 100, 9440–9445. PubMed PMC
Vandebriel R., De Jong W. (2012). A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 5, 61–71. PubMed PMC
van Delft J., Gaj S., Lienhard M., Albrecht M., Kirpiy A., Brauers K., Claessen S., Lizarraga D., Lehrach H., Herwig R., et al. (2012). RNA-seq provides new insights in the transcriptome responses induced by the carcinogen benzo[a]pyrene. Toxicol. Sci. 130, 427–439. PubMed
Vecera Z., Mikuska P., Moravec P., Smolik J.. 2011. Unique exposure system for the whole body inhalation experiments with small animals. Presented at the NANOCON, pp. 652–654. Tanger Ltd., Brno, Czech Republic.
Vivarelli S., Lenzken S. C., Ruepp M.-D., Ranzini F., Maffioletti A., Alvarez R., Mühlemann O., Barabino S. M. L. (2013). Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2. PLoS One 8, e61980. PubMed PMC
Walsh M. C., Lee J., Choi Y. (2015). Tumor necrosis factor receptor-associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol. Rev. 266, 72–92. PubMed PMC
Wan R., Mo Y., Zhang Z., Jiang M., Tang S., Zhang Q. (2017). Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol. 14, 38. PubMed PMC
Wang L., Wang L., Ding W., Zhang F. (2010). Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol. 10, 8617–8624. PubMed
Xu J., Futakuchi M., Alexander D. B., Fukamachi K., Numano T., Suzui M., Shimizu H., Omori T., Kanno J., Hirose A., et al. (2014). Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles. Arch. Toxicol. 88, 65–75. PubMed PMC