Decolorization and detoxification of textile wastewaters by recombinant Myceliophthora thermophila and Trametes trogii laccases
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30555766
PubMed Central
PMC6269326
DOI
10.1007/s13205-018-1525-3
PII: 1525
Knihovny.cz E-zdroje
- Klíčová slova
- Decolorization, Laccases, PBMCs, Textile dyes, Toxicity, Wastewater,
- Publikační typ
- časopisecké články MeSH
Laccases are multi-copper oxidoreductases with broad biotechnological applications. Here, we report detailed biochemical characterization of purified recombinant laccases originating from Myceliophthora thermophila (MtL) and Trametes trogii (TtL). We identified optimal conditions for decolorization of commercial dyes and textile wastewater samples. We also tested the toxicity of decolorized wastewater samples using human peripheral blood mononuclear cells. MtL and TtL were expressed in Saccharomyces cerevisiae, and secreted enzymes were purified by consecutive hydrophobic and gel chromatography. The molecular masses of TtL (~ 65 kDa) and MtL (> 100 kDa) suggested glycosylation of the recombinant enzymes. Deglycosylation of MtL and TtL led to 25% and 10% decreases in activity, respectively. In a thermal stability assay, TtL retained 61% and MtL 86% of the initial activity at 40 °C. While TtL retained roughly 50% activity at 60 °C, MtL lost stability at temperatures higher than 40 °C. MtL and TtL preferred syringaldazine as a substrate, and the catalytic efficiencies for ABTS oxidation were 7.5 times lower than for syringaldazine oxidation. In the presence of the mediator HBT, purified TtL almost completely decolorized dyes within 30 min and substantially decolorized wastewater samples from a textile factory (up to 74%) within 20 h. However, products of TtL-catalyzed decolorization were more toxic than MtL-decolorized products, which were almost completely detoxified.
Zobrazit více v PubMed
Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol. 2000;66:3357–3362. doi: 10.1128/AEM.66.8.3357-3362.2000. PubMed DOI PMC
Ai MQ, Wang FF, Huang F. Purification and characterization of a thermostable laccase from Trametes trogii and its ability in modification of kraft lignin. J Microbiol Biotechnol. 2015;25:1361–1370. doi: 10.4014/jmb.1502.02022. PubMed DOI
Ali N, Hameed A, Ahmed S. Physicochemical characterization and Bioremediation perspective of textile effluent, dyes and metals by indigenous Bacteria. J Hazard Mater. 2009;164:322–328. doi: 10.1016/j.jhazmat.2008.08.006. PubMed DOI
Antosova Z, Sychrova H. Yeast hosts for the production of recombinant laccases: a review. Mol Biotechnol. 2016;58:93–116. doi: 10.1007/s12033-015-9910-1. PubMed DOI
Antosova Z, Herkommerova K, Pichova I, Sychrova H. Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent—a comparative study. Biotechnol Prog. 2018;34:69–80. doi: 10.1002/btpr.2559. PubMed DOI
Arca-Ramos A, et al. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Environ Sci Pollut Res. 2016;23:3217–3228. doi: 10.1007/s11356-015-5564-6. PubMed DOI
Archna LKN, Kiran S. Biological methods of dye removal from textile effluents—a review. J Biochem Tech. 2012;3:177–180.
Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, Iqbal HMN, Kannan S, Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—a review. Sci Total Environ. 2018;612:1516–1531. doi: 10.1016/j.scitotenv.2017.09.013. PubMed DOI
Bello-Gil D, et al. An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccase-like multicopper oxidase on poly-3-hydroxybutyrate. Microbial Biotechnol. 2018 doi: 10.1111/1751-7915.13287. PubMed DOI PMC
Benzina O, et al. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system. Environ Sci Pollut Res. 2013;20:5177–5187. doi: 10.1007/s11356-013-1491-6. PubMed DOI
Bilal M, Asgher M, Parra-Saldivar R, Hu HB, Wang W, Zhang XH, Iqbal HMN. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ. 2017;576:646–659. doi: 10.1016/j.scitotenv.2016.10.137. PubMed DOI
Brinch DS, Pedersen PB. Toxicological studies on laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regul Toxicol Pharmacol. 2002;35:296–307. doi: 10.1006/rtph.2002.1538. PubMed DOI
Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol. 2003;69:987–995. doi: 10.1128/AEM.69.2.987-995.2003. PubMed DOI PMC
Cannatelli MD, Ragauskas AJ. Two decades of laccases: advancing sustainability in the chemical industry. Chem Rec. 2017;17:122–140. doi: 10.1002/tcr.201600033. PubMed DOI
Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater. 2010;174:694–699. doi: 10.1016/j.jhazmat.2009.09.106. PubMed DOI
Champagne PP, Nesheim ME, Ramsay JA. A mechanism for NaCl inhibition of Reactive Blue 19 decolorization and ABTS oxidation by laccase. Appl Microbiol Biotechnol. 2013;97:6263–6269. doi: 10.1007/s00253-012-4525-y. PubMed DOI
Chatha SAS, Asgher M, Iqbal HMN. Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ Sci Pollut Res. 2017;24:14005–14018. doi: 10.1007/s11356-017-8998-1. PubMed DOI
Chen SC, et al. Biochemical characterization of a novel laccase from the basidiomycete fungus Cerrena sp. WR1. Protein Eng Des Sel. 2012;25:761–769. doi: 10.1093/protein/gzs082. PubMed DOI
Chhabra M, Mishra S, Sreekrishnan TR. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. J Environ Health Sci Eng. 2015;13:38. doi: 10.1186/s40201-015-0192-0. PubMed DOI PMC
Colao MC, Lupino S, Garzillo AM, Buonocore V, Ruzzi M. Heterologous expression of lcc 1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microb Cell Fact. 2006;5:31. doi: 10.1186/1475-2859-5-31. PubMed DOI PMC
Daâssi D, Zouari-Mechichi H, Frikha F, Martinez MJ, Nasri M, Mechichi T. Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain. 3 Biotech. 2013;3:115–125. doi: 10.1007/s13205-012-0076-2. PubMed DOI PMC
Dellai A, Dridi D, Lemorvan V, Robert J, Cherif A, Mosrati R, Mansour HB. Decolorization does not always mean detoxification: case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environ Sci Pollut Res. 2013;20:5790–5796. doi: 10.1007/s11356-013-1603-3. PubMed DOI
Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. 2004;30:953–971. doi: 10.1016/j.envint.2004.02.001. PubMed DOI
Grandclément C, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res. 2017;111:297–317. doi: 10.1016/j.watres.2017.01.005. PubMed DOI
Grassi E, Scodeller P, Filiel N, Carballo R, Levin L. Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeterior Biodegrad. 2011;65:635–643. doi: 10.1016/j.ibiod.2011.03.007. DOI
Guan ZB, Shui Y, Song CM, Zhang N, Cai YJ, Liao XR. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Environ Sci Pollut Res. 2015;22:9515–9523. doi: 10.1007/s11356-015-4426-6. PubMed DOI
Herkommerova K, Zemancikova J, Sychrova H, Antosova Z. Immobilization in polyvinyl alcohol hydrogel enhances yeast storage stability and reusability of recombinant laccase-producing S. cerevisiae. Biotechnol Lett. 2018;40:405–411. doi: 10.1007/s10529-017-2485-0. PubMed DOI
Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. J Environ Manage. 2016;182:351–366. doi: 10.1016/j.jenvman.2016.07.090. PubMed DOI
Hollmann F, Gumulya Y, Tölle C, Liese A, Thum O. Evaluation of the laccase from Myceliophthora thermophila as industrial biocatalyst for polymerization reactions. Macromolecules. 2008;41:8520–8524. doi: 10.1021/ma801763t. DOI
Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci. 2017;51:52–74. doi: 10.1016/j.jes.2016.08.023. PubMed DOI
Kepp KP. Halide binding and inhibition of laccase copper clusters: The role of reorganization energy. Inorg Chem. 2015;54:476–483. doi: 10.1021/ic5021466. PubMed DOI
Khlifi R, Belbahri L, Woodward S, Ellouz M, Dhouib A, Sayadi S, Mechichi T. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J Hazard Mater. 2010;175:802–808. doi: 10.1016/j.jhazmat.2009.10.079. PubMed DOI
Legerská B, Chmelová D, Ondrejovič M. Degradation of synthetic dyes by laccases—a mini-review. Nova Biotechnol Chim. 2016;15:90–106. doi: 10.1515/nbec-2016-0010. DOI
Luo Q, Chen Y, Xia J, Wang K-Q, Cai Y-J, Liao X-R, Guan Z-B. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis. Enzyme Microbial Technol. 2018;109:11–19. doi: 10.1016/j.enzmictec.2017.07.013. PubMed DOI
Maestre-Reyna M, et al. Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS One. 2015;10:e0120601. doi: 10.1371/journal.pone.0120601. PubMed DOI PMC
Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol. 2016;36:639–651. doi: 10.3109/07388551.2015.1004518. PubMed DOI
Mate DM, Alcalde M. Laccase engineering: From rational design to directed evolution. Biotechnol Adv. 2015;33:25–40. doi: 10.1016/j.biotechadv.2014.12.007. PubMed DOI
Moilanen U, Kellock M, Várnai A, Andberg M, Viikari L. Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce. Biotechnol Biofuels. 2014;7:177. doi: 10.1186/s13068-014-0177-8. PubMed DOI PMC
Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut. 2018;234:190–213. doi: 10.1016/j.envpol.2017.11.060. PubMed DOI
Nyanhongo GS, Gomes J, Guebitz G, Zvauya R, Read J, Steiner W. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 2002;36:1449–1456. doi: 10.1016/S0043-1354(01)00365-7. PubMed DOI
Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Uses of Laccases in the food industry. Enzyme Res. 2010 doi: 10.4061/2010/918761. PubMed DOI PMC
Patel H, Gupte A. Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresour Bioprocess. 2016;3:11. doi: 10.1186/s40643-016-0088-6. DOI
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci. 2015;72:923–940. doi: 10.1007/s00018-014-1823-9. PubMed DOI PMC
Piscitelli A, Giardina P, Mazzoni C, Sannia G. Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2005;69:428–439. doi: 10.1007/s00253-005-0004-z. PubMed DOI
Ranieri D, Colao MC, Ruzzi M, Romagnoli G, Bianchi MM. Optimization of recombinant fungal laccase production with strains of the yeast Kluyveromyces lactis from the pyruvate decarboxylase promoter. FEMS Yeast Res. 2009;9:892–902. doi: 10.1111/j.1567-1364.2009.00532.x. PubMed DOI
Raseda N, Hong S, Kwon OY, Ryu K. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride. J Microbiol Biotechnol. 2014;24:1673–1678. doi: 10.4014/jmb.1408.08012. PubMed DOI
Rezaei S, Tahmasbi H, Mogharabi M, Ameri A, Forootanfar H, Khoshayand MR, Faramarzi MA. Laccase-catalyzed decolorization and detoxification of Acid Blue 92: statistical optimization, microtoxicity, kinetics, and energetics. J Environ Health Sci Eng. 2015;13:31. doi: 10.1186/s40201-015-0183-1. PubMed DOI PMC
Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006;24:219–226. doi: 10.1016/j.tibtech.2006.03.006. PubMed DOI
Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI
Sen SK, Raut S, Bandyopadhyay P, Raut S. Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev. 2016;30:112–133. doi: 10.1016/j.fbr.2016.06.003. DOI
Senthivelan T, Kanagaraj J, Panda RC. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach—a review. Biotechnol Bioprocess Eng. 2016;21:19–38. doi: 10.1007/s12257-015-0278-7. DOI
Shanmugam S, Ulaganathan P, Swaminathan K, Sadhasivam S, Wu Y-R. Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: degradation pathway and product analysis. Int Biodeterior Biodegrad. 2017;125:258–268. doi: 10.1016/j.ibiod.2017.08.001. DOI
Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage. 2018;210:10–22. doi: 10.1016/j.jenvman.2017.12.075. PubMed DOI
Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol. 2011;41:807–878. doi: 10.1080/10643380903218376. DOI
Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes—a review. Int Biodeterior Biodegrad. 2015;104:21–31. doi: 10.1016/j.ibiod.2015.04.027. DOI
Sondhi S, Kaur R, Kaur S, Kaur PS. Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int J Biol Macromol. 2018;117:1093–1100. doi: 10.1016/j.ijbiomac.2018.06.007. PubMed DOI
Tauber MM, Gubitz GM, Rehorek A. Degradation of azo dyes by oxidative processes—laccase and ultrasound treatment. Bioresour Technol. 2008;99:4213–4220. doi: 10.1016/j.biortech.2007.08.085. PubMed DOI
Vanhulle S, et al. Cytotoxicity and genotoxicity evolution during decolorization of dyes by White Rot Fungi. World J Microbiol Biotechnol. 2008;24:337–344. doi: 10.1007/s11274-007-9475-7. DOI
Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B, Folch-Mallol J. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol. 2009;45:233–239. doi: 10.1016/j.enzmictec.2009.05.007. DOI
Wang J, Lu L, Feng F. Improving the Indigo Carmine decolorization ability of a Bacillus amyloliquefaciens laccase by site-directed mutagenesis. Catalysts. 2017;7:275. doi: 10.3390/catal7090275. DOI
Widsten P, Kandelbauer A. Laccase applications in the forest products industry: a review. Enzyme Microb Technol. 2008;42:293–307. doi: 10.1016/j.enzmictec.2007.12.003. DOI
Xu F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem. 1997;272:924–928. doi: 10.1074/jbc.272.2.924. PubMed DOI
Yang J, Yang XD, Lin YH, Ng TB, Lin J, Ye XY. Laccase-catalyzed decolorization of Malachite Green: Performance optimization and degradation mechanism. PLoS One. 2015;10:14. doi: 10.1371/journal.pone.0127714. PubMed DOI PMC
Zeng X, Cai Y, Liao X, Zeng X, Luo S, Zhang D. Anthraquinone dye assisted the decolorization of azo dyes by a novel Trametes trogii laccase. Process Biochem. 2012;47:160–163. doi: 10.1016/j.procbio.2011.10.019. DOI
Zhu C, Bao G, Huang S. Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnol Biotechnol Equip. 2016;30:270–276. doi: 10.1080/13102818.2015.1135081. DOI
Zilly A, da Silva Coelho-Moreira J, Bracht A, Marques de Souza CG, Carvajal AE, Koehnlein EA, Peralta RM. Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int Biodeterior Biodegrad. 2011;65:340–344. doi: 10.1016/j.ibiod.2010.12.007. DOI
Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martínez AT, Martínez MJ. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb Technol. 2006;39:141–148. doi: 10.1016/j.enzmictec.2005.11.027. DOI