Magnetized plasma implosion in a snail target driven by a moderate-intensity laser pulse

. 2018 Dec 17 ; 8 (1) : 17895. [epub] 20181217

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30559388

Grantová podpora
3880/ H2020/2016/2/2018/2 Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2 Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2 Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2 Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2 Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
LM2015083 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 30559388
PubMed Central PMC6297252
DOI 10.1038/s41598-018-36176-8
PII: 10.1038/s41598-018-36176-8
Knihovny.cz E-zdroje

Optical generation of compact magnetized plasma structures is studied in the moderate intensity domain. A sub-ns laser beam irradiated snail-shaped targets with the intensity of about 1016 W/cm2. With a neat optical diagnostics, a sub-megagauss magnetized plasmoid is traced inside the target. On the observed hydrodynamic time scale, the hot plasma formation achieves a theta-pinch-like density and magnetic field distribution, which implodes into the target interior. This simple and elegant plasma magnetization scheme in the moderate-intensity domain is of particular interest for fundamental astrophysical-related studies and for development of future technologies.

Zobrazit více v PubMed

Higginson DP, et al. A novel platform to study magnetized high-velocity collisionless shocks. High Energ. Dens. Phys. 2015;17:190–197. doi: 10.1016/j.hedp.2014.11.007. DOI

Santos JJ, et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New J. Phys. 2015;17:83051. doi: 10.1088/1367-2630/17/8/083051. DOI

Nilson PM, et al. Magnetic Reconnection and Plasma Dynamics in Two-Beam Laser-Solid Interactions. Phys. Rev. Lett. 2006;97:255001. doi: 10.1103/PhysRevLett.97.255001. PubMed DOI

Fox W, Bhattacharjee A, Germaschewski K. Fast magnetic reconnection in laser-produced plasma bubbles. Phys. Rev. Lett. 2011;106:1–4. doi: 10.1103/PhysRevLett.106.215003. PubMed DOI

Pisarczyk T, et al. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities. Phys. Plasmas. 2017;24:102711. doi: 10.1063/1.4995044. DOI

Korneev P, D’Humières E, Tikhonchuk V. Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target. Phys. Rev. E. 2015;91:43107. doi: 10.1103/PhysRevE.91.043107. PubMed DOI

Korneev P, Tikhonchuk V, D’Humières E. Magnetization of laser-produced plasma in a chiral hollow target. New J. Phys. 2017;19:33023. doi: 10.1088/1367-2630/aa5bd8. DOI

Korneev P. Magnetized plasma structures in laser-irradiated curved targets. J. Phys. Conf. 2017;788:UNSP 012042. doi: 10.1088/1742-6596/788/1/012042. DOI

Korneev, P. et al. Laser electron acceleration on curved surfaces. Preprint at https://arxiv.org/abs/1711.00971 (2017).

Abe Y, et al. Whispering gallery effect in relativistic optics. J. Exp. Theor. Phys. 2018;107:366–367.

Pisarczyk T, et al. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma. Phys. Plasmas. 2015;22:102706. doi: 10.1063/1.4933364. DOI

Renner O, Smid M, Batani D, Antonelli L. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Control. Fusion. 2016;58:075007. doi: 10.1088/0741-3335/58/7/075007. DOI

Singh S, et al. Absolute calibration of imaging plate detectors for electron kinetic energies between 150 keV and 1.75 MeV. Rev. Sci. Instrum. 2017;88:075105. doi: 10.1063/1.4993921. PubMed DOI

Pisarczyk T, et al. Short wavelength experiments on laser pulse interaction with extended pre-plasma at the PALS-installation. Laser Part. Beams. 2016;34:94–108. doi: 10.1017/S0263034615000993. DOI

Cikhardt J, et al. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Rev. Sci. Instrum. 2014;85:103507. doi: 10.1063/1.4898016. PubMed DOI

Kasperczuk A, et al. Interaction of Cu and plastic plasmas as a method of forming laser produced Cu plasma streams with a narrow jet or pipe geometry. Phys. Plasmas. 2011;18:044503. doi: 10.1063/1.3579396. DOI

Dostal J, et al. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system. Rev. Sci. Instrum. 2017;88:045109. doi: 10.1063/1.4979810. PubMed DOI

Zaras-Szydlowska, A. et al. Complex interferometry application for spontaneous magnetic field determination in laser-produced plasma. Poster: P5.214, 44thEuropean Physical Society Conference on Plasma Physics, 26–30 June 2017, Belfast.

Smid M, Renner O, Rosmej F, Khaghani D. Investigation of x-ray emission induced by hot electrons in dense Cu plasmas. Phys. Scr. 2014;161:014020. doi: 10.1088/0031-8949/2014/T161/014020. DOI

Poye A, et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Phys. Rev. E. 2015;91:043106. doi: 10.1103/PhysRevE.91.043106. PubMed DOI

Krasa J, et al. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Phys. Control. Fusion. 2017;59:065007. doi: 10.1088/1361-6587/aa6805. DOI

Krasa J, Delle Side D, Giuffreda E, Nassisi V. Characteristics of target polarization by laser ablation. Laser Part. Beams. 2015;33:601–605. doi: 10.1017/S0263034615000683. DOI

Shen, V. K., Siderius, D. W., Krekelberg, W. P. & Hatch, H. W. E. NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173. National Institute of Standards and Technology, Gaithersburg MD, 20899 (2017).

Afanasiev, Y V. & Gus’kov, S. Y Energy Transfer to the Plasma in Laser Targets in Nuclear Fusion by Inertial Confinement (eds Velarde, G. et al.) 99 (CRC Press, 1993); // Lindl, J. D. Phys. Plasmas2, 3933 (1995).

Remington BA, Drake RP, Ryutov DD. Experimental astrophysics with high power lasers and z pinches. Rev. Mod. Phys. 2006;78:755–807. doi: 10.1103/RevModPhys.78.755. DOI

Sironi L, Spitkovsky A. Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys. J. 2011;726:75. doi: 10.1088/0004-637X/726/2/75. DOI

Drake, R. P. High - Energy - Density Physics “Fundamentals, Inertial Fusion, and Experimental Astrophysics” (eds Davison, L. & Horie, Y.) (Springer, 2006).

Zhong J, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nat. Phys. 2010;6:984–987. doi: 10.1038/nphys1790. DOI

Pisarczyk T, Rupasov AA, Sarkisov GS, Shikanov AS. Faraday-rotation method for magnetic-field diagnostics in a laser plasma. J. Russ. Laser Res. 1990;11:1–32. doi: 10.1007/BF01124729. DOI

Podorov SG, Renner O, Wehrhan O, Förster E. Optimized polychromatic x-ray imaging with asymmetrically bent crystals. J. Phys. D Appl. Phys. 2001;34:2363. doi: 10.1088/0022-3727/34/15/317. DOI

Salvat, F., Fernandez-Varea, J. M. & Sempau, J. PENELOPE-2008. OECD/Nuclear Energy Agency, https://www.oecd-nea.org/science/pubs/2009/nea6416-penelope.pdf (2009).

Bartnik A, et al. Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems. Phys. Plasmas. 2015;22:043302. doi: 10.1063/1.4919024. DOI

Kasperczuk A, Pisarczyk T. Application of automated interferometric system for investigation of the behaviour of a laser-produced plasma in strong external magnetic fields. Opt. Appl. 2001;31:571–597.

Dahl, D. A. SIMION 3D VESION 7.0 User’s Manual (1995).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...