Magnetized plasma implosion in a snail target driven by a moderate-intensity laser pulse
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
3880/ H2020/2016/2/2018/2
Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2
Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2
Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2
Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
3880/ H2020/2016/2/2018/2
Ministerstwo Nauki i Szkolnictwa Wyższego (Ministry of Science and Higher Education)
LM2015083
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
30559388
PubMed Central
PMC6297252
DOI
10.1038/s41598-018-36176-8
PII: 10.1038/s41598-018-36176-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Optical generation of compact magnetized plasma structures is studied in the moderate intensity domain. A sub-ns laser beam irradiated snail-shaped targets with the intensity of about 1016 W/cm2. With a neat optical diagnostics, a sub-megagauss magnetized plasmoid is traced inside the target. On the observed hydrodynamic time scale, the hot plasma formation achieves a theta-pinch-like density and magnetic field distribution, which implodes into the target interior. This simple and elegant plasma magnetization scheme in the moderate-intensity domain is of particular interest for fundamental astrophysical-related studies and for development of future technologies.
Center for Relativistic Laser Science IBS Gwang Ju 61005 Korea
Faculty of Electrical Engineering Czech Technical University 166 27 Prague Czech Republic
Insitute of Plasma Physics Czech Academy of Sciences 182 00 Prague Czech Republic
Institute of Physics Czech Academy of Sciences 182 21 Prague Czech Republic
Institute of Plasma Physics and Laser Microfusion Warsaw Poland
National Research Nuclear University MEPhI Moscow Russian Federation
P N Lebedev Physical Institute of RAS Moscow Russian Federation
Zobrazit více v PubMed
Higginson DP, et al. A novel platform to study magnetized high-velocity collisionless shocks. High Energ. Dens. Phys. 2015;17:190–197. doi: 10.1016/j.hedp.2014.11.007. DOI
Santos JJ, et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New J. Phys. 2015;17:83051. doi: 10.1088/1367-2630/17/8/083051. DOI
Nilson PM, et al. Magnetic Reconnection and Plasma Dynamics in Two-Beam Laser-Solid Interactions. Phys. Rev. Lett. 2006;97:255001. doi: 10.1103/PhysRevLett.97.255001. PubMed DOI
Fox W, Bhattacharjee A, Germaschewski K. Fast magnetic reconnection in laser-produced plasma bubbles. Phys. Rev. Lett. 2011;106:1–4. doi: 10.1103/PhysRevLett.106.215003. PubMed DOI
Pisarczyk T, et al. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities. Phys. Plasmas. 2017;24:102711. doi: 10.1063/1.4995044. DOI
Korneev P, D’Humières E, Tikhonchuk V. Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target. Phys. Rev. E. 2015;91:43107. doi: 10.1103/PhysRevE.91.043107. PubMed DOI
Korneev P, Tikhonchuk V, D’Humières E. Magnetization of laser-produced plasma in a chiral hollow target. New J. Phys. 2017;19:33023. doi: 10.1088/1367-2630/aa5bd8. DOI
Korneev P. Magnetized plasma structures in laser-irradiated curved targets. J. Phys. Conf. 2017;788:UNSP 012042. doi: 10.1088/1742-6596/788/1/012042. DOI
Korneev, P. et al. Laser electron acceleration on curved surfaces. Preprint at https://arxiv.org/abs/1711.00971 (2017).
Abe Y, et al. Whispering gallery effect in relativistic optics. J. Exp. Theor. Phys. 2018;107:366–367.
Pisarczyk T, et al. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma. Phys. Plasmas. 2015;22:102706. doi: 10.1063/1.4933364. DOI
Renner O, Smid M, Batani D, Antonelli L. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Control. Fusion. 2016;58:075007. doi: 10.1088/0741-3335/58/7/075007. DOI
Singh S, et al. Absolute calibration of imaging plate detectors for electron kinetic energies between 150 keV and 1.75 MeV. Rev. Sci. Instrum. 2017;88:075105. doi: 10.1063/1.4993921. PubMed DOI
Pisarczyk T, et al. Short wavelength experiments on laser pulse interaction with extended pre-plasma at the PALS-installation. Laser Part. Beams. 2016;34:94–108. doi: 10.1017/S0263034615000993. DOI
Cikhardt J, et al. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Rev. Sci. Instrum. 2014;85:103507. doi: 10.1063/1.4898016. PubMed DOI
Kasperczuk A, et al. Interaction of Cu and plastic plasmas as a method of forming laser produced Cu plasma streams with a narrow jet or pipe geometry. Phys. Plasmas. 2011;18:044503. doi: 10.1063/1.3579396. DOI
Dostal J, et al. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system. Rev. Sci. Instrum. 2017;88:045109. doi: 10.1063/1.4979810. PubMed DOI
Zaras-Szydlowska, A. et al. Complex interferometry application for spontaneous magnetic field determination in laser-produced plasma. Poster: P5.214, 44thEuropean Physical Society Conference on Plasma Physics, 26–30 June 2017, Belfast.
Smid M, Renner O, Rosmej F, Khaghani D. Investigation of x-ray emission induced by hot electrons in dense Cu plasmas. Phys. Scr. 2014;161:014020. doi: 10.1088/0031-8949/2014/T161/014020. DOI
Poye A, et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Phys. Rev. E. 2015;91:043106. doi: 10.1103/PhysRevE.91.043106. PubMed DOI
Krasa J, et al. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Phys. Control. Fusion. 2017;59:065007. doi: 10.1088/1361-6587/aa6805. DOI
Krasa J, Delle Side D, Giuffreda E, Nassisi V. Characteristics of target polarization by laser ablation. Laser Part. Beams. 2015;33:601–605. doi: 10.1017/S0263034615000683. DOI
Shen, V. K., Siderius, D. W., Krekelberg, W. P. & Hatch, H. W. E. NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173. National Institute of Standards and Technology, Gaithersburg MD, 20899 (2017).
Afanasiev, Y V. & Gus’kov, S. Y Energy Transfer to the Plasma in Laser Targets in Nuclear Fusion by Inertial Confinement (eds Velarde, G. et al.) 99 (CRC Press, 1993); // Lindl, J. D. Phys. Plasmas2, 3933 (1995).
Remington BA, Drake RP, Ryutov DD. Experimental astrophysics with high power lasers and z pinches. Rev. Mod. Phys. 2006;78:755–807. doi: 10.1103/RevModPhys.78.755. DOI
Sironi L, Spitkovsky A. Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys. J. 2011;726:75. doi: 10.1088/0004-637X/726/2/75. DOI
Drake, R. P. High - Energy - Density Physics “Fundamentals, Inertial Fusion, and Experimental Astrophysics” (eds Davison, L. & Horie, Y.) (Springer, 2006).
Zhong J, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nat. Phys. 2010;6:984–987. doi: 10.1038/nphys1790. DOI
Pisarczyk T, Rupasov AA, Sarkisov GS, Shikanov AS. Faraday-rotation method for magnetic-field diagnostics in a laser plasma. J. Russ. Laser Res. 1990;11:1–32. doi: 10.1007/BF01124729. DOI
Podorov SG, Renner O, Wehrhan O, Förster E. Optimized polychromatic x-ray imaging with asymmetrically bent crystals. J. Phys. D Appl. Phys. 2001;34:2363. doi: 10.1088/0022-3727/34/15/317. DOI
Salvat, F., Fernandez-Varea, J. M. & Sempau, J. PENELOPE-2008. OECD/Nuclear Energy Agency, https://www.oecd-nea.org/science/pubs/2009/nea6416-penelope.pdf (2009).
Bartnik A, et al. Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems. Phys. Plasmas. 2015;22:043302. doi: 10.1063/1.4919024. DOI
Kasperczuk A, Pisarczyk T. Application of automated interferometric system for investigation of the behaviour of a laser-produced plasma in strong external magnetic fields. Opt. Appl. 2001;31:571–597.
Dahl, D. A. SIMION 3D VESION 7.0 User’s Manual (1995).