Plant evolution in alkaline magnesium-rich soils: A phylogenetic study of the Mediterranean genus Hormathophylla (Cruciferae: Alysseae) based on nuclear and plastid sequences

. 2018 ; 13 (12) : e0208307. [epub] 20181221

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30576314

Habitats with alkaline edaphic substrates are often associated with plant speciation and diversification. The tribe Alysseae, in the family Brassicaceae, epitomizes this evolutionary trend. In this lineage, some genera, like Hormathophylla, can serve as a good case for testing the evolutionary framework. This genus is centered in the western Mediterranean. It grows on different substrates, but mostly on alkaline soils. It has been suggested that diversification in many lineages of the tribe Alysseae and in the genus Hormathophylla is linked to a tolerance for high levels of Mg+2 in xeric environments. In this study, we investigated the controversial phylogenetic placement of Hormathophylla in the tribe, the generic limits and the evolutionary relationships between the species using ribosomal and plastid DNA sequences. We also examined the putative association between the evolution of different ploidy levels, trichome morphology and the type of substrates. Our analyses demonstrated the monophyly of the genus Hormathophylla including all previously described species. Nuclear sequences revealed two lineages that differ in basic chromosome numbers (x = 7 and x = 8 or derived 11, 15) and in their trichome morphology. Contrasting results with plastid genes indicates more complex relationships between these two lineages involving recent hybridization processes. We also found an association between chloroplast haplotypes and substrate, especially in populations growing on dolomites. Finally, our dated phylogeny demonstrates that the origin of the genus took place in the mid-Miocene, during the establishment of temporal land bridges between the Tethys and Paratethys seas, with a later diversification during the upper Pliocene.

Zobrazit více v PubMed

Al-Shehbaz IA. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon. 2012;61:931–954.

Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Syst Evol. 2006;259:89–120. 10.1007/s00606-006-0415-z DOI

Warwick SI, Sauder CA, Al-Shehbaz IA. Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Botany. 2008;86:315–336. 10.1139/B08-013 DOI

Avetisian VE. The system of the family Brassicaceae (in Russia). Bot Zhurn. 1983;68:1297–1305.

Hayek A. Entwurf eines Cruciferen-systems auf phylogenetischer Grundlage. Beih Bot Centralbl. 1911;27:127–335.

Janchen E. Das System der Cruciferen. Osterr Bot Z. 1942;91:1–28. 10.1007/BF01257342 DOI

Schulz OE. Cruciferae Die Natürlichen Pflanzenfamilien 17 Leipzig: Verlag von Wilhelm Engelmann; 1936.

Al-Shehbaz IA, Sklenár P. Draba longiciliata sp. nov. (Brassicaceae) from Ecuador. Nord J Bot. 2010;28:528–529. 10.1111/j.1756-1051.2010.00951.x DOI

Al-Shehbaz IA, Mummenhoff K. Stubendorffia and Winklera belong to the expanded Lepidium (Brassicaceae). Edinburgh J Bot. 2011;68:165–171. 10.1017/S0960428611000060 DOI

Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: Tribes and trichomes revisited. Am J Bot. 2008;95:1307–1327. 10.3732/ajb.0800065 PubMed DOI

Cecchi L. A reappraisal of Phyllolepidum (Brassicaceae), a neglected genus of the European flora, and its relationships in tribe Alysseae. Plant Biosyst. 2011;145(4):818–831. 10.1080/11263504.2012.758675 DOI

Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol. 2010;27:55–71. 10.1093/molbev/msp202 PubMed DOI

Mummenhoff K, Polster A, Mühlhausen A, Theißen G. Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exp Bot. 2009;60:1503–1513. 10.1093/jxb/ern304 PubMed DOI

Warwick SI, Sauder CA, Mayer MS, Al-Shehbaz IA. Phylogenetic relationships in the tribes Schizopetaleae and Thelypodieae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndhF DNA sequences. Botany. 2009;87:961–985. 10.1139/B09-051 DOI

Warwick SI, Sauder CA, Al-Shehbaz IA. Systematic position of Ivania, Scoliaxon, and Phravenia (Brassicaceae). Taxon. 2011;60:1156–1164.

Rešetnik I, Satovic Z, Schneeweiss GM, Liber Z. Phylogenetic relationships in Brassicaceae tribe Alysseae inferred from nuclear ribosomal and chloroplast DNA sequence data. Mol Phylogenet Evol. 2013;69:772–786. 10.1016/j.ympev.2013.06.026 PubMed DOI

Španiel S, Kempa M, Salmerón-Sánchez E, Fuertes-Aguilar J, Mota JF, Al-Shehbaz IA, et al. AlyBase–database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with new generic concept of the tribe. Plant Syst Evol. 2015;301:2463–2491. 10.1007/s00606-015-1257-3 DOI

Küpfer PH. Hormathophylla Cullen & T.R. Dudley In: Castroviejo S, Aedo C, Laínz M, Muñoz Garmendia F, Nieto Feliner G, Paiva J, Benedí C, editors. Flora iberica 4. Madrid: Real Jardín Botánico, CSIC; 1993. pp. 184–196.

Ball PW, Dudley TR. Alyssum L. Flora Europaea. 1993;1:359–369.

Dudley TR, Cullen J. Studies in the Old World Alysseae Hayek. Feddes Repert. 1995;71:218–228. 10.1002/fedr.19650710105 DOI

Küpfer P. Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera. 1974;23:1–322.

Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Lousã M, Penas A. Vascular plant communities of Spain and Portugal. Addenda to the Syntaxonomical checklist of 2001. Itinera Geobot. 2002; 15:5–922.

Salmerón-Sánchez E, Fuertes Aguilar J, Španiel S, Mendoza-Fernández AJ, Martinez-Hernandez F, Mota JF. The status of Hormathophylla baetica: a new combination and lectotypification in Hormathophylla cochleata. Phytotaxa. 2016; 280:45–54. 10.11646/phytotaxa.280.1.4 DOI

Warwick SI, Al-Shehbaz IA. Brassicaceae: Chromosome number index and database on CD-Rom. Plant Syst Evol. 2006; 259:237–248. 10.1007/s00606-006-0421-1. DOI

Mota JF, Medina-Cazorla JM, Navarro FB, Pérez-García FJ, Pérez-Latorre A, Sánchez-Gómez P, et al. Dolomite flora of the Baetic Ranges glades (South Spain): a review. Flora. 2008; 203:359–375. 10.1016/j.flora.2007.06.006 DOI

Mota JF, Garrido-Becerra JA, Merlo ME, Medina-Cazorla JM, Sánchez-Gómez P. The edaphism: gypsum, dolomite and serpentine flora and vegetation In: Loidi J, Werger MJA, editors. The Vegetation of the Iberian Peninsula 3. Berlin: Springer-Verlag; 2017. 10.1007/978-3-319-54867-8_6 DOI

Pérez-Latorre AV, Triana NH, Cabezudo B. Composition, ecology and conservation of the south-Iberian serpentine flora in the context of the Mediterranean basin. An Jard Bot Madrid. 2013;70: 62–71. 10.3989/ajbm.2334 DOI

Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C. Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytol. 2003;159:691–699. 10.1046/j.1469-8137.2003.00837.x PubMed DOI

Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): Evidence from nrDNA sequence data. Ann Bot-London. 2010;106:751–767. 10.1093/aob/mcq162 PubMed DOI PMC

Brady KU, Kruckeberg AR, Bradshaw HD Jr. Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst. 2005;36:243–266. 10.1146/annurev.ecolsys.35.021103.105730 DOI

Kazakou E, Dimitrakopoulos PG, Reeves RD, Baker AJM, Troumbis AY. Hypotheses, mechanisms, and trade-offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biol Rev. 2008;83: 495–508. 10.1111/j.1469-185x.2008.00051.x PubMed DOI

Mota JF, Valle F, Cabello J. Dolomitic vegetation of South Spain. Vegetatio. 1993;109: 29–45. 10.1007/BF00149543 DOI

Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am J Bot. 2006;93: 607–619. 10.3732/ajb.93.4.607 PubMed DOI

Španiel S, Zozomová-Lihová J, Passalacqua NG, Marhold K . Infraspecific classification of Alyssum diffusum (Brassicaceae) in Italy. Willdenowia. 2012;42:37–56. 10.3372/wi.42.42104 DOI

Zozomová-Lihová J, Marhold K, Španiel S. Taxonomy and evolutionary history of Alyssum montanum (Brassicaceae) and related taxa in southwestern Europe and Morocco: diversification driven by polyploidy, geographic and ecological isolation. Taxon. 2014;63:562–591. 10.12705/633.18 DOI

Koch MA. Mid-Miocene divergence of Ionopsidium and Cochlearia and its impact on the systematics and biogeography of the tribe Cochlearieae (Brassicaceae). Taxon. 2012;61:76–92.

Cecchi L, Colzi I, Coppi A, Gonnelli C, Selvi F. Diversity and biogeography of Ni-hyperaccumulators of Alyssum section Odontarrhena (Brassicaceae) in the central western Mediterranean: evidence from karyology, morphology and DNA sequence data. Bot J Linn Soc. 2013;173: 269–289. 10.1111/boj.12084 DOI

Moore MJ, Jansen RK. Origins and biogeography of gypsophily in the Chihuahuan Desert plant group Tiquilia subg. Eddya (Boraginaceae). Syst Bot. 2007;32:392–414. 10.1600/036364407781179680 DOI

Maire R. Flore de l’ Afrique du Nord 13. Paris: Éditions Lechevalier; 1967.

Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA. Toward a global phylogeny of the Brassicaceae. Mol Biol Evol. 2006;23:2142–2160. 10.1093/molbev/msl087 PubMed DOI

Thiers B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. (continuously updated). http://sweetgum.nybg.org/science/ih/.

Soltis DE, Johnson LA, Looney C. Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst Bot. 1996;21:169–176. 10.2307/2419746 DOI

Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am J Bot. 2007;94:275–288. 10.3732/ajb.94.3.275 PubMed DOI

Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17:1105–1109. 10.1007/BF00037152 PubMed DOI

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot. 2005;92:142–166. 10.3732/ajb.92.1.142 PubMed DOI

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. CLUSTALW and CLUSTALX V2. Bioinformatics. 2007;23:2947–2948. 10.1093/bioinformatics/btm404 PubMed DOI

Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113 10.1186/1471-2105-5-113 PubMed DOI PMC

Fuertes-Aguilar J, Rosselló JA, Nieto Feliner G. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol Ecol. 1999;8:1341–1346. 10.1046/j.1365-294X.1999.00690.x PubMed DOI

Fuertes-Aguilar J, Nieto Feliner G. Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Mol Phylogenet Evol. 2003;28:430–447. 10.1016/S1055-7903(02)00301-9 PubMed DOI

Huson DH, Bryant D. Application of Phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267. 10.1093/molbev/msj030 PubMed DOI

Templeton AR. Nested clade analyses of phylogeographic data: Testing hypotheses about gene flow and population history. Mol Ecol. 1998;7:381–397. 10.1046/j.1365-294x.1998.00308.x PubMed DOI

Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1660. 10.1046/j.1365-294x.2000.01020.x PubMed DOI

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI

Posada D. JMODELTEST: Phylogenetic Model Averaging. Mol Biol Evol. 2008;25:1253–1256. 10.1093/molbev/msn083 PubMed DOI

Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. In: 20th IEEE International Parallel & Distributed Processing Symposium. Rhodes Island: IEE; 2006a. 10.1109/ipdps.2006.1639535 DOI

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006b;22:2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI

Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–771. 10.1080/10635150802429642 PubMed DOI

Nixon KC. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 1999;15:407–414. 10.1111/j.1096-0031.1999.tb00277.x PubMed DOI

Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JAA, Harrington M, et al. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Mol Phylogenet Evol. 2009;51:238–258. 10.1016/j.ympev.2009.01.012 PubMed DOI

Drummond AJ, Ho SYQ, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710. 10.1371/journal.pbio.0040088 PubMed DOI PMC

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214 10.1186/1471-2148-7-214 PubMed DOI PMC

Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253:769–778. 10.1016/j.jtbi.2008.04.005 PubMed DOI

Rambaut A, Drummond AJ. TRACER V1.4; 2007. http://beast.bio.ed.ac.uk/Tracer.

Rambaut A. FIGTREE V1.2; 2008. http://tree.bio.ed.ac.uk/software/FigTree/.

Wing SL. Eocene and Oligocene floras and vegetation of the Rocky Mountains. Ann Mo Bot Gard. 1987;74:748–784. 10.2307/2399449 DOI

Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. P Natl Acad Sci USA. 2010;107:18724–18728. 10.1073/pnas.0909766107 PubMed DOI PMC

Cueto Romero M, Blanca López G. Números cromosomáticos de plantas occidentales, 392–402. An Jard Bot Madrid. 1986;43: 403–409.

Galland N. Recherche sur l’origine de la flore orophile du Maroc: etude caryologique et cytogeographique. Trav Inst Sci Univ Mohammed V Sér Bot. 1988;35: 1–168.

Küpfer P. Sur deux especes orophiles intéressantes des Abruzzes: Saxífraga italica D.A.Webb et Ptílotrichum rupestre (Temora) Boissier ssp. rupestre. Bull Soc Neuchâtel Sci Nat. 1972;95: 43–55.

Morales Torres C, Robles Cruz AB, Romero García AT. Algunas crucíferas interesantes para la flora de Granada (España). Lazaroa. 1986;9:147–157.

Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant. 1992;85:625–631. 10.1111/j.1399-3054.1992.tb04764.x DOI

Schönswetter P, Lachmayer M, Lettner C, Prehsler D, Rechnitzer S, Reich DS, Sonnleitner M, Wagner I, Hulber K, Schneeweiss GM, Travnicek P, Suda J. Sympatric diploid and hexaploid cytotypes of Eastern Alpine Senecio carniolicus (Asteraceae) are separated along an altitudinal gradient. J Plant Res. 2007;120:721–725. 10.1007/s10265-007-0108-x PubMed DOI

Suda J, Trávníček P. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—New prospects for plant research. Cytometry Part A. 2006;69:273–280. 10.1002/cyto.a.20253 PubMed DOI

Otto F. DAPI Staining of Fixed Cells for High-Resolution Flow Cytometry of Nuclear DNA. Meth Cell Biol. 1990;33:105–110. 10.1016/S0091-679X(08)60516-6 PubMed DOI

Quézel P. Definition of the Mediterranean region and the origin of its flora In: Gómez-Campo C, editor. Plant conservation in the Mediterranean area. Dordrecht: Dr. W. Junk Publishers; 1985.

Oosterbroek P, Arntzen JW. Area-cladograms of circum Mediterranean taxa in relation to Mediterranean paleogeography. J Biogeogr. 1992;19:3–20. 10.2307/2845616 DOI

Sanmartín I. Dispersal vs. vicariance in the Mediterranean: Historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). J Biogeogr. 2003;30:1883–1897. 10.1046/j.0305-0270.2003.00982.x DOI

Thompson JD. Plant evolution in the Mediterranean. Oxford: Oxford University Press; 2005. 10.1093/acprof:oso/9780198515340.001.0001 DOI

Rosenbaum G, Lister GS, Duboz C. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J Virt Explor. 2002;8:107–130.

Ribera I, Blasco-Zumeta J. Biogeographical links between steppe insects in the Monegros region (Aragón, NE Spain), the eastern Mediterranean, and central Asia. J Biogeogr. 1998;25:969–986. 10.1046/j.1365-2699.1998.00226.x DOI

Oberprieler C. Temporal and spatial diversification of circum-Mediterranean Compositae-Anthemideae. Taxon. 2005;54:951–966. 10.2307/25065480 DOI

Nieto Feliner G. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review, Perspect. Plant Ecol Evol Syst. 2014;16:265–278. 10.1016/j.ppees.2014.07.002 DOI

Bocquet GW, Kiefer H. The Messinian Model. A new out look for the floristics and systematics of the Mediterranean area. Candollea. 1978;33:269–287.

Jiménez-Moreno G, Fauquette S, Suc JP. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev Palaeobot Palyno. 2010;162:410–415. 10.1016/j.revpalbo.2009.08.001 DOI

Palmarev E. Paleontological evidences of the tertiary history and the origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol. 1989;162:93–107. 10.1007/BF00936912 DOI

Postigo Mijarra JM, Barrón E, Gómez Manzaneque F, Morla C. Floristic changes in the Iberian Peninsula and Balearic Islands (south-west Europe) during the Cenozoic. J Biogeogr. 2009;36:2025–2043. 10.1111/j.1365-2699.2009.02142.x DOI

Tzedakis PC. Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Sci Rev. 2007;26:2042–2066. 10.1016/j.quascirev.2007.03.014 DOI

Fiz-Palacios O, Valcárcel V. From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspect Plant Ecol Evol Syst. 2013;15:130–137.

Valente LM, Savolainen V, Vargas P. Unparalleled rates of species diversification in Europe. Proc Biol Sci. 2010;277:1489–1496. 10.1098/rspb.2009.2163 PubMed DOI PMC

Guzmán B, Vargas P. Historical biogeography and character evolution of Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. Org Divers Evol. 2009;9:83–99. 10.1016/j.ode.2009.01.001 DOI

Kropf M, Comes HP, Kadereit JW. Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol. 2006;172:169–184. 10.1111/j.1469-8137.2006.01795.x PubMed DOI

Kropf M, Comes HP, Kadereit JW. Causes of the genetic architecture of southwest European high -mountain disjuncts. Plant Ecol Divers. 2008;1:217–228. 10.1080/17550870802331938 DOI

Zhang LB, Comes HP, Kadereit JW. Phylogeny and quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. Am J Bot. 2001;88: 2331–2345. 10.2307/3558393 PubMed DOI

Zhang LB, Comes HP, Kadereit JW. The temporal course of Quaternary diversification in the European high mountain endemic Primula sect. Auricula (Primulaceae). Int J Plant Sci. 2004;165:191–207. 10.1086/380747 DOI

Fauquette S, Suc JP, Guiot J, Diniz F, Feddi N, Zheng Z, et al. Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeogr Palaeoclimatol Palaeoecol. 1999;152:15–36. 10.1016/S0031-0182(99)00031-0 DOI

Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. 10.1038/35016000 PubMed DOI

Ray N, Adams JM. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeol 11; 2001. http://archive-ouverte.unige.ch/unige:17817

Vargas P, Carrió E, Guzmán B, Amat E, Güemes J. A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms. J Biogeogr. 2009;36:1297–1312. 10.1111/j.1365-2699.2008.02059.x DOI

Gutiérrez Larena B, Fuertes Aguilar J, Nieto Feliner G. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol. 2002;11:1965–1974. 10.1046/j.1365-294X.2002.01594.x PubMed DOI

Nieto Feliner G, Gutiérrez Larena B, Fuertes Aguilar J. Fine scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Ann Bot. 2004;93:189–200. 10.1093/aob/mch027 PubMed DOI PMC

Fuertes-Aguilar J, Gutiérrez Larena B, Nieto Feliner G. Genetic and morphological diversity in Armeria (Plumbaginaceae) is shaped by glacial cycles in Mediterranean refugia. Ana Jard Bot Madrid. 2011;68:175–197. 10.3989/ajbm.2260 DOI

Morales Torres C. Nevadensia Rivas Mart In: Blanca G, Cabezudo B, Cueto M, Fernández López C, Morales Torres C, editors. Flora Vascular de Andalucía Oriental 3: 108 Sevilla: Consejería de Medio Ambiente, Junta de Andalucía; 2009.

Dinneny JR, Yanofsky MF. Drawing line and borders: how the dehiscent fruit of Arabidopsis is patterned. BioEssays. 2004;27:42–49. 10.1002/bies.20165 PubMed DOI

Ferrandiz C, Pelaz S, Yanofsky MF. Control of carpel and fruit development in Arabidopsis. Ann Rev Biochem. 1999;68:321–354. 10.1146/annurev.biochem.68.1.321 PubMed DOI

Ferrandiz C, Liljegren SJ, Yanofsky MF. Negative regulations of SHATTERPROOF genes by FRUITFUL during Arabidopsis fruit development. Science. 2000;289:436–438. 10.1126/science.289.5478.436 PubMed DOI

Ferrandiz C. Regulation of fruit dehiscence in Arabidopsis. J Exp Bot. 2002;53:2031–2038. 10.1093/jxb/erf082 PubMed DOI

Küpfer PH. Sur une Alysseae inédite de la flore espagnole. An Inst Bot Cavanilles. 1978;35:119–127.

Gutierrez-Larena B, Aguilar JF, Feliner GN. Dispersal across southern Iberian refugia? integrating RAPDs, sequence data and morphometrics in Armeria (plumbaginaceae). Folia Geobot. 2006;41:305–322. 10.1007/BF02904944 DOI

Nieto Feliner G. Southern European glacial refugia: A tale of tales. Taxon. 2011;60:365–372.

Dixon CJ, Schönswetter P, Schneeweiss GM. Traces of ancient range shifts in a mountain plant group (Androsace halleri complex, Primulaceae). Mol Ecol. 2007;16:3890–3901. 10.1111/j.1365-294X.2007.03342.x PubMed DOI

Nieto G, Fuertes-Aguilar J, Rosselló JA. Reticulation or divergence: the origin of a rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers. Plant Syst Evol 2002;231:19–38.

Verboom GA, Linder HP, Stock WD. Testing the adaptive nature of radiation: Growth form and life history divergence in the African grass genus Ehrharta (Poaceae: Ehrhartoideae). Am J Bot 2004;91:1364–1370. 10.3732/ajb.91.9.1364 PubMed DOI

Alvarez N, Thiel‐Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, et al. History or ecology? Substrate type as a major driver of patial genetic structure in Alpine plants. Ecol Lett. 2009;12:632–640. 10.1111/j.1461-0248.2009.01312.x PubMed DOI

Dillenberger MS, Kadereit JW. The Phylogeny of the european high mountain genus Adenostyles (Asteraceae-Senecioneae) reveals that edaphic shifts coincide with dispersal events. Am J Bot. 2013;100:1171–1183. 10.3732/ajb.1300060 PubMed DOI

Moore AJ, Merges D, Kadereit JW. The origin of the serpentine endemic Minuartia laricifolia subsp. ophiolitica by vicariance and competitive exclusion. Mol Ecol. 2013;22:2218–2231. 10.1111/mec.12266 PubMed DOI

Hendry AP, Nosil P, Rieseberg LH. The speed of ecological speciation. Func Ecol. 2007;21:455–464. 10.1111/j.1365-2435.2007.01240.x PubMed DOI PMC

Schluter D. Adaptive radiation along genetic lines of least resistance. Evolution. 1996;50:1766–1774. 10.1111/j.1558-5646.1996.tb03563.x PubMed DOI

Celik N, Akpulat HA, Doenmez E. A new species of Physoptychis (Brassicaceae) from central Anatolia, Turkey. Bot J Linn Soc. 2007;154:393–396. 10.1111/j.1095-8339.2007.00662.x DOI

Çetin O, Duran A, Martin E, Tustas S. A taxonomic study of the genus Fibigia Medik.(Brassicaceae). Afr J Biotechnol. 2012;11:109–119.

Krämer U. Metal hyperaccumulation in plants. Ann Rev Plant Biol. 2010;61:517–534. 10.1146/annurev-arplant-042809-112156 PubMed DOI

Brooks RR. Serpentine and its vegetation A multidisciplinary approach. Portland: Dioscorides Press; 1987.

Salmerón-Sánchez E, Martínez-Nieto MI, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Gil de Carrasco C, et al. Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates. Plant Soil. 2014a;374:233–250. 10.1007/s11104-013-1857-z DOI

Cecchi L, Selvi F. Phylogenetic relationships of the monotypic genera Halascya and Paramoltkia and the origins of serpentine adaptation in circummediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon. 2009;58:700–714.

Taylor SI, Levy F. Responses to soils and a test for preadaptation to serpentine in Phacelia dubia (Hydrophyllaceae). New Phytol. 2002;155:437–447. 10.1046/j.1469-8137.2002.00478.x PubMed DOI

Chan R, Baldwin BG, Ornduff R. Goldfields Revisited: A Molecular Phylogenetic Perspective on the Evolution of Lasthenia (Compositae: Heliantheae sensu lato). Int J Plant Sci. 2001;162:1347–1360. 10.1086/323277 DOI

Burge DO, Erwin DM, Islam MB, Kellermann J, Kembel SW, Wilken DH, Manos PS. Diversification of Ceanothus (Rhamnaceae) in the California Floristic Province. Int J Plant Sci. 2011;172:1137–1164. 10.1086/662028 DOI

Guzmán B, Lledó MD, Vargas P. Adaptive radiation in mediterranean Cistus (Cistaceae). PLoS ONE. 2009;4, e6362 10.1371/journal.pone.0006362 PubMed DOI PMC

Salmerón-Sánchez E, Merlo ME, Medina-Cazorla JM, Pérez-García FJ, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Valle F, Mota JF. Variability, genetic structure and phylogeography of the dolomitophilous species Convolvulus boissieri (Convolvulaceae) in the Baetic ranges, inferred from AFLPs, plastid DNA and ITS sequences. Bot J Linn Soc. 2014b;176:506–523. 10.1111/boj.12220 DOI

Mota JF, Garrido-Becerra JA, Pérez-García FJ, Salmerón-Sánchez E, Sánchez-Gómez P, Merlo-Calvente ME. Conceptual baseline for a global checklist of gypsophytes. Lazaroa. 2016;37:7–30.

Rundel PW. Successional dynamics of chamise chaparral: the interface of basic research and management. In: Conrad CE, Oechel WC, coordinators. Dynamics and management of Mediterranean-type ecosystems. Berkeley: U.S. Dep. Agric., For. Serv. Gen. Tech. Rep. PSW-58; 1982. pp. 86–90

Vitarelli NC, Riina R, Cassino MF, Meira RMSA. Trichome-like emergences in Croton of Brazilian highland rock outcrops: Evidences for atmospheric water uptake. Perspec Plant Ecol Evol Syst. 2016;22:23–35. 10.1016/j.ppees.2016.07.002 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace