Differential role of a persistent seed bank for genetic variation in early vs. late successional stages

. 2018 ; 13 (12) : e0209840. [epub] 20181226

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30586422

Persistent seed banks are predicted to have an important impact on population genetic processes by increasing effective population size and storing past genetic diversity. Accordingly, persistent seed banks may buffer genetic effects of disturbance, fragmentation and/or selection. However, empirical studies surveying the relationship between aboveground and seed bank genetics under changing environments are scarce. Here, we compared genetic variation of aboveground and seed bank cohorts in 15 populations of the partially cleistogamous Viola elatior in two contrasting early and late successional habitats characterized by strong differences in light-availability and declining population size. Using AFLP markers, we found significantly higher aboveground than seed bank genetic diversity in early successional meadow but not in late successional woodland habitats. Moreover, individually, three of eight woodland populations even showed higher seed bank than aboveground diversity. Genetic differentiation among populations was very strong (фST = 0.8), but overall no significant differentiation could be detected between above ground and seed bank cohorts. Small scale spatial genetic structure was generally pronounced but was much stronger in meadow (Sp-statistic: aboveground: 0.60, seed bank: 0.32) than in woodland habitats (aboveground: 0.11; seed bank: 0.03). Our findings indicate that relative seed bank diversity (i.e. compared to aboveground diversity) increases with ongoing succession and despite decreasing population size. As corroborated by markedly lower small-scale genetic structure in late successional habitats, we suggest that the observed changes in relative seed bank diversity are driven by an increase of outcrossing rates. Persistent seed banks in Viola elatior hence will counteract effects of drift and selection, and assure a higher chance for the species' long term persistence, particularly maintaining genetic variation in declining populations of late successional habitats and thus enhancing success rates of population recovery after disturbance events.

Zobrazit více v PubMed

Leck MA, Parker VT, Simpson RL. Ecology of soil seed banks. San Diego: Academic Press; 1989.

Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press; 2001.

Hölzel N, Otte A. Assessing soil seed bank persistence in flood-meadows: The search for reliable traits. J Veg Sci. 2004;15: 93–100.

Honnay O, Jacquemyn H, Bossuyt B, Hermy M. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol. 2005;166: 723–736. 10.1111/j.1469-8137.2005.01352.x PubMed DOI

Templeton AR, Levin DA Evolutionary consequences of seed pools. Am Nat. 1979;114: 232–249.

Tonsor SJ, Kalisz S, Fisher J, Holtsford TP. A life-history based study of population genetic structure: seed bank to adults in Plantago lanceolata. Evolution. 1993;47: 833–843. 10.1111/j.1558-5646.1993.tb01237.x PubMed DOI

Nunney L. The effective size of annual plant populations: The interaction of a seed bank with fluctuating population size in maintaining genetic variation. Am Nat. 2002;160: 195–204. 10.1086/341017 PubMed DOI

Vitalis R, Glémin S, Olivieri I. When genes go to sleep: the population genetic consequences of seed dormancy and monocarpic perenniality. Am Nat. 2004;163: 295–311. 10.1086/381041 PubMed DOI

McCue KA, Holtsford TP. Seed bank influences on genetic diversity in the rare annual Clarkia springvillensis (Onagraceae). Am J Bot. 1998;85: 30–36. PubMed

Lundemo S, Falahati-Anbaran M, Stenoien HK. Seed banks cause elevated generation times and effective population sizes of Arabidopsis thaliana in northern Europe. Mol Ecol. 2009;18: 2798–2811. 10.1111/j.1365-294X.2009.04236.x PubMed DOI

Hanin N, Quaye M, Westberg E, Barazani O. Soil seed bank and among-years genetic diversity in arid populations of Eruca sativa Miller (Brassicaceae). J Arid Environ. 2013;91: 151–154.

Falahati-Anbaran M, Lundemo S, Agren J, Stenoien HK (2011) Genetic consequences of seed banks in the perennial herb Arabidopsis lyrata subsp. petraea (Brassicaceae). Am J Bot. 2011;98: 1475–1485. 10.3732/ajb.1100021 PubMed DOI

Mandák B, Zákravský P, Mahelka V, Plačková I. Can soil seed banks serve as genetic memory? A study of three species with contrasting life history strategies. PLoS ONE. 2012;7: e49471 10.1371/journal.pone.0049471 PubMed DOI PMC

Morris AB, Baucom RS, Cruzan MB. Stratified analysis of the soil seed bank in the cedar glade endemic Astragalus bibullatus: evidence for historical changes in genetic structure. Am J Bot. 2002;89: 29–36. 10.3732/ajb.89.1.29 PubMed DOI

Cabin RJ, Mitchell RJ, Marshall DL. Do surface plant and soil seed bank populations differ genetically? A multipopulation study of the desert mustard Lesquerella fendleri (Brassicaceae). Am J Bot. 1998;85: 1098–1109. PubMed

Mandák B, Bímová K, Mahelka V, Plačková I. How much genetic variation is stored in the seed bank? A study of Atriplex tatarica (Chenopodiaceae). Mol Ecol. 2006;15: 2653–2663. 10.1111/j.1365-294X.2006.02953.x PubMed DOI

Shimono A, Ueno S, Tsumura Y, Washitani I. Spatial genetic structure links between soil seed banks and above-ground populations of Primula modesta in subalpine grassland. J Ecol. 2006;94: 77–86.

Plue J, Vandepitte K, Honnay O, Cousins SAO. Does the seed bank contribute to the build-up of a genetic extinction debt in the grassland perennial Campanula rotundifolia? Ann Bot. 2017;120: 373–385. 10.1093/aob/mcx057 PubMed DOI PMC

Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K. Can a seed bank maintain the genetic variation in the above ground plant population? Oikos. 2008;117: 1–5.

Lesica P, Allendorf FW. Are small populations of plants worth preserving? Cons Biol. 1992;6: 135–139.

Alvarez-Buylla ER, Chaos A, Pinero D, Garay AA. Demographic genetics of a pioneer tropical tree species: patch dynamics, seed dispersal, and seed banks. Evolution. 1996;50: 1155–1166. 10.1111/j.1558-5646.1996.tb02356.x PubMed DOI

Michalski SG, Durka W. High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol. 2007;16: 4715–4727. 10.1111/j.1365-294X.2007.03547.x PubMed DOI

Koch M, Huthmann M, Bernhardt KG. Cardamine amara L. (Brassicaceae) in dynamic habitats: genetic composition and diversity of seed bank and established populations. Basic Appl Ecol. 2003;4: 339–348.

Uchiyama K, Goto S, Tsuda Y, Takahashi Y, Ide Y. Genetic diversity and genetic structure of adult and buried seed populations of Betula maximowicziana in mixed and post-fire stands. For Ecol Manage. 2006;237: 119–126.

Moora M. Responses of a rare (Viola elatior) and a common (Viola mirabilis) congeneric species to different management conditions in grassland—is different light competition ability responsible for different abundances? Acta Oecol. 2003;24: 169–174.

Eckstein RL, Hölzel N, Danihelka J. Biological Flora of Central Europe: Viola elatior, V. pumila and V. stagnina. Perspect Plant Ecol Evol Syst. 2006. a;8: 45–66.

Schulz B, Eckstein RL, Durka W. Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Mol Ecol. 2014;23: 3523–3537. 10.1111/mec.12835 PubMed DOI

Meusel H, Jäger E, Rauschert S, Weinert E. Vergleichende Chorologie der zentraleuropäischen Flora. Vol. 2 Jena: Gustav Fischer Verlag; 1978.

Danihelka J, Niklfeld H, Šípošová H. Viola elatior, V. pumila and V. stagnina in Austria, Czechia and Slovakia: a story of decline. Preslia. 2009;81: 151–171.

Eckstein RL, Otte A. Effects of cleistogamy and pollen source on seed production and offspring performance in three endangered violets. Basic Appl Ecol. 2005;6: 339–350.

Eckstein R, O’Neill R, Danihelka J, Otte A, Köhler W. Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol. 2006. b;15: 2367–2379. 10.1111/j.1365-294X.2006.02944.x PubMed DOI

Ter Heerdt G, Verweij G, Bekker R, Bakker J. An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Func Ecol. 1996;10: 144–151.

Kloss L, Fischer M, Durka W. Land-use effects on genetic structure of a common grassland herb: A matter of scale. Basic Appl Ecol. 2011;12: 440–448.

Coart E, Glabeke SV, Petit RJ, Bockstaele EV, Roldán-Ruiz I. Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet. 2005;6: 259–273.

Kalinowski ST. Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet. 2004;5: 539–543.

Szpiech ZA, Jakobsson M, Rosenberg NA. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 2008;24: 2498–2504. 10.1093/bioinformatics/btn478 PubMed DOI PMC

Kamvar ZN, Tabima JF, Grünwald NJ Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2: e281 10.7717/peerj.281 PubMed DOI PMC

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: URL https://www.R-project.org/. 2017.

Goldberg D, Scheiner S. ANOVA and ANCOVA: field competition experiments In: Scheiner S, Gurevitch J, editors. Design and analysis of ecological experiments. Oxford: Oxford University Press; 1993. pp. 77–98.

Excoffier L, Lischer H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10: 564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24: 1403–1405. 10.1093/bioinformatics/btn129 PubMed DOI

Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2: 618–620.

Hardy OJ. Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol. 2003;12: 1577–1588. PubMed

Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13: 921–935. PubMed

Smouse PE, Peakall R, Gonzales E. A heterogeneity test for fine-scale genetic structure. Mol Ecol. 2008;17: 3389–3400. PubMed

Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28: 2537–2539. 10.1093/bioinformatics/bts460 PubMed DOI PMC

Banks SC, Peakall R. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol. 2012;21: 2092–2105. 10.1111/j.1365-294X.2012.05485.x PubMed DOI

Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol. 2004;13: 1143–1155. 10.1111/j.1365-294X.2004.02141.x PubMed DOI

Reisch C, Bernhardt-Römermann M. The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol. 2014;215: 1493–1511.

Sun M. Cleistogamy in Scutellaria indica (Labiatae): effective mating system and population genetic structure. Mol Ecol. 1999;8: 1285–1295. PubMed

Durka W, Nossol C, Welk E, Ruprecht E, Wagner V, Wesche K et al. Extreme genetic depauperation and differentiation of both populations and species in Eurasian feather grasses (Stipa). Plant Syst Evol. 2012;299: 259–269.

Culley TM, Wolfe AD. Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity. 2001;86: 545–556. PubMed

Van Treuren R, Bijlsma R, Van Delden W, Ouborg N. The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity. 1991;66: 181–189.

Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol. 1996;11: 413–418. PubMed

Raffl C, Schönswetter P, Erschbamer B. “Sax‐sess”—genetics of primary succession in a pioneer species on two parallel glacier forelands. Mol Ecol. 2006;15: 2433–2440. 10.1111/j.1365-294X.2006.02964.x PubMed DOI

Barrett LG, He TH, Lamont BB, Krauss SL. Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae). Mol. Ecol. 2005;14: 4169–4179. 10.1111/j.1365-294X.2005.02726.x PubMed DOI

Culley TM, Klooster MR. The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Bot Rev. 2007;73: 1–30.

Cheplick GP. Plasticity of chasmogamous and cleistogamous reproductive allocation in grasses. Aliso: A Journal of Systematic and Evolutionary Botany. 2007;23: 286–294.

Brown WV. The relation of soil moisture to cleistogamy in Stipa leucotricha. Bot Gazette. 1952;113: 438–444.

Mattila T, Salonen V. Reproduction of Viola mirabilis in relation to light and nutrient availability. Can J Bot. 1995;73: 1917–1924.

Gygax A. Populationsentwicklung, Ansiedlungsversuche und genetische Variabilität von Viola elatior Fr. in der Schweiz. Diplomarbeit, Université de Neuchâtel, Switzerland: 2001.

Zaghloul M, Reisch C, Poschlod P. Soil seed bank contributes significantly to genetic variation of Hypericum sinaicum in a changing environment. Plant Syst Evol. 2013;299: 1819–1828.

Zeng X, Michalski SG, Fischer M, Durka W. Species diversity and population density affect genetic structure and gene dispersal in a subtropical understory shrub. J Plant Ecol. 2011;5: 270–278.

Ottewell KM, Bickerton D, Lowe AJ. Can a seed bank provide demographic and genetic rescue in a declining population of the endangered shrub Acacia pinguifolia? Conserv Genet. 2011;12: 669–678.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...