On the modelling of M2 tidal magnetic signatures: effects of physical approximations and numerical resolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30595659
PubMed Central
PMC6290710
DOI
10.1186/s40623-018-0967-5
PII: 967
Knihovny.cz E-zdroje
- Klíčová slova
- Electromagnetic induction, Ocean tides, Ocean-mantle electromagnetic coupling,
- Publikační typ
- časopisecké články MeSH
The magnetic signatures of ocean M 2 tides have been successfully detected by the low-orbit satellite missions CHAMP and Swarm. They have been also used to constrain the electrical conductivity in the uppermost regions of the Earth's mantle. Here, we concentrate on the problem of accurate numerical modelling of tidally induced magnetic field, using two different three-dimensional approaches: the contraction integral equation method and the spherical harmonic-finite element method. In particular, we discuss the effects of numerical resolution, self-induction, the galvanic and inductive coupling between the oceans and the underlying mantle. We also study the applicability of a simplified two-dimensional approximation, where the ocean is approximated by a single layer with vertically averaged conductivity and tidal forcing. We demonstrate that the two-dimensional approach is sufficient to predict the large-scale tidal signals observable on the satellite altitude. However, for accurate predictions of M 2 tidal signals in the areas with significant variations of bathymetry, and close to the coastlines, full three-dimensional calculations are required. The ocean-mantle electromagnetic coupling has to be treated in the full complexity, including the toroidal magnetic field generated by the vertical currents flowing from and into the mantle.
Zobrazit více v PubMed
Egbert GD, Erofeeva SY. Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol. 2002;19(2):183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2. DOI
Einšpigel D, Martinec Z. Time-domain modelling of global ocean tides generated by the full lunisolar potential. Ocean Dyn. 2017;67:165–189. doi: 10.1007/s10236-016-1016-1. DOI
Everett ME, Constable S, Constable C. Effects of near-surface conductance on global satellite induction responses. Geophys J Int. 2003;153:277–286. doi: 10.1046/j.1365-246X.2003.01906.x. DOI
Grayver AV, Schnepf NR, Kuvshinov AV, Sabaka TJ, Manoj C, Olsen N. Satellite tidal magnetic signals constrain oceanic lithosphere–asthenosphere boundary. Sci Adv. 2016;2:1600798. doi: 10.1126/sciadv.1600798. PubMed DOI PMC
Grayver AV, Munch FD, Kuvshinov AV, Khan A, Sabaka TJ, Tøffner-Clausen L. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. Geophys Res Lett. 2017;44:6074–6081. doi: 10.1002/2017GL073446. PubMed DOI PMC
Guzavina M, Grayver A, Kuvshinov A. Do ocean tidal signals influence recovery of solar quiet variations? Earth Planets Space. 2018;70(1):5. doi: 10.1186/s40623-017-0769-1. DOI
Hendershott MC. Ocean tides. Eos Trans Am Geophys Union. 1973;54(2):76–86. doi: 10.1029/EO054i002p00076-02. DOI
Irrgang C, Saynisch J, Thomas M. Utilizing oceanic electromagnetic induction to constrain an ocean general circulation model: a data assimilation twin experiment. J Adv Model Earth Syst. 2017;9(3):1703–1720. doi: 10.1002/2017MS000951. DOI
Kantha LH, Tierney CC. Global baroclinic tides. Prog Oceanogr. 1997;40(1):163–178. doi: 10.1016/S0079-6611(97)00028-1. DOI
Kelbert A, Kuvshinov A, Velímský J, Koyama T, Ribaudo J, Sun J, Martinec Z, Weiss CJ. Global 3-D electromagnetic forward modelling: a benchmark study. Geophys J Int. 2014;197:785–814. doi: 10.1093/gji/ggu028. DOI
Kuvshinov AV. 3-D global induction in the oceans and solid earth: recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric and oceanic origin. Surv Geophys. 2008;29(2):139–186. doi: 10.1007/s10712-008-9045-z. DOI
Martinec Z. Spectral-finite element approach to three-dimensional electromagnetic induction in a spherical earth. Geophys J Int. 1999;136:229–250. doi: 10.1046/j.1365-246X.1999.00713.x. DOI
Maus S, Kuvshinov A. Ocean tidal signals in observatory and satellite magnetic measurements. Geophys Res Lett. 2004;31:15313. doi: 10.1029/2004GL020090. DOI
Maus S. The geomagnetic power spectrum. Geophys J Int. 2008;174(1):135–142. doi: 10.1111/j.1365-246X.2008.03820.x. DOI
Pankratov OV, Avdeev DB, Kuvshinov AV. Scattering of electromagnetic field in inhomogeneous earth: forward problem solution. Izv Akad Nauk SSSR Fiz Zemli. 1995;3:17–25.
Sabaka TJ, Tyler RH, Olsen N. Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry. Geophys Res Lett. 2016;43:3237–3245. doi: 10.1002/2016GL068180. DOI
Sabaka TJ, Olsen N, Tyler RH, Kuvshinov A. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 year of CHAMP, Ørsted, SAC-C and observatory data. Geophys J Int. 2015;200:1596–1626. doi: 10.1093/gji/ggu493. DOI
Sanford TB. Motionally induced electric and magnetic fields in the sea. J Geophys Res. 1971;76:3476–3492. doi: 10.1029/JC076i015p03476. DOI
Saynisch J, Irrgang C, Thomas M. Estimating ocean tide model uncertainties for electromagnetic inversion studies. Ann Geophys. 2018;36(4):1009–1014. doi: 10.5194/angeo-36-1009-2018. DOI
Saynisch J, Petereit J, Irrgang C, Kuvshinov A, Thomas M. Impact of climate variability on the tidal oceanic magnetic signal-a model-based sensitivity study. J Geophys Res Oceans. 2016;121(8):5931–5941. doi: 10.1002/2016JC012027. DOI
Schnepf NR, Manoj C, Kuvshinov A, Toh H, Maus S. Tidal signals in ocean-bottom magnetic measurements of the northwestern pacific: observation versus prediction. Geophys J Int. 2014;198:1096–1110. doi: 10.1093/gji/ggu190. DOI
Schnepf NR, Nair M, Maute A, Pedatella NM, Kuvshinov A, Richmond AD. A comparison of model-based ionospheric and ocean tidal magnetic signals with observatory data. Geophys Res Lett. 2018;45(15):7257–7267. doi: 10.1029/2018GL078487. DOI
Singer B. Method for solution of Maxwell’s equations in non-uniform media. Geophys J Int. 1995;120:590–598. doi: 10.1111/j.1365-246X.1995.tb01841.x. DOI
Sleijpen GLG, Fokkema DR. Bicgstab(ell) for linear equations involving unsymmetric matrices with complex spectrum. Electron Trans Numer Anal. 1993;1:11–32.
Stammer D, Ray R, Andersen OB, Arbic B, Bosch W, Carrère L, Cheng Y, Chinn D, Dushaw B, Egbert G, et al. Accuracy assessment of global barotropic ocean tide models. Rev Geophys. 2014;52(3):243–282. doi: 10.1002/2014RG000450. DOI
Telschow R, Gerhards C, Rother M. On the approximation of spatial structures of global tidal magnetic field models. Ann Geophys. 2018;36(5):1393–1402. doi: 10.5194/angeo-36-1393-2018. DOI
Tyler RH, Maus S, Lühr H. Satellite observations of magnetic fields due to ocean tidal flow. Science. 2003;299:239–241. doi: 10.1126/science.1078074. PubMed DOI
Tyler RH (2017) Mathematical modeling of electrodynamics near the surface of earth and planetary water worlds. In: Technical report TM-2017-219022, NASA. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170011279.pdf. Accessed 8 Nov 2018
Tyler RH, Boyer TP, Minami T, Zweng MM, Reagan JR. Electrical conductivity of the global ocean. Earth Planets Space. 2017;69:156. doi: 10.1186/s40623-017-0739-7. PubMed DOI PMC
Velímský J, Martinec Z. Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int. 2005;160:81–101. doi: 10.1111/j.1365-246X.2005.02546.x. DOI