ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery

. 2019 Jan 02 ; 8 () : . [epub] 20190102

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30601115

Grantová podpora
BB/I008675/1 Biotechnology and Biological Sciences Research Council - United Kingdom
099149/Z/12/Z Wellcome - International
CZ.02.1.01/0.0/0.0/15_003/0000441 European Regional Development Fund - International
109854/Z/15/Z Wellcome - International
BB/N015126/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
104632 Wellcome - International
BB/M003604/1 Biotechnology and Biological Sciences Research Council - United Kingdom
ep/m508214/1 Engineering and Physical Sciences Research Council - International
University Research Fellowship Royal Society - International

Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.

Zobrazit více v PubMed

Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife. 2016;5:e15598. doi: 10.7554/eLife.15598. PubMed DOI PMC

Antonoaea R, Fürst M, Nishiyama K, Müller M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry. 2008;47:5649–5656. doi: 10.1021/bi800233w. PubMed DOI

Arkowitz RA, Joly JC, Wickner W. Translocation can drive the unfolding of a preprotein domain. The EMBO Journal. 1993;12:243–253. doi: 10.1002/j.1460-2075.1993.tb05650.x. PubMed DOI PMC

Bauer BW, Rapoport TA. Mapping polypeptide interactions of the SecA ATPase during translocation. PNAS. 2009;106:20800–20805. doi: 10.1073/pnas.0910550106. PubMed DOI PMC

Bauer BW, Shemesh T, Chen Y, Rapoport TA. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell. 2014;157:1416–1429. doi: 10.1016/j.cell.2014.03.063. PubMed DOI PMC

Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI

Berks BC. The twin-arginine protein translocation pathway. Annual Review of Biochemistry. 2015;84:843–864. doi: 10.1146/annurev-biochem-060614-034251. PubMed DOI

Berliner LJ, Grunwald J, Hankovszky HO, Hideg K. A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Analytical Biochemistry. 1982;119:450–455. doi: 10.1016/0003-2697(82)90612-1. PubMed DOI

Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC

Bieker KL, Phillips GJ, Silhavy TJ. The sec and prl genes of Escherichia coli. Journal of Bioenergetics and Biomembranes. 1990;22:291–310. doi: 10.1007/BF00763169. PubMed DOI

Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. The Journal of Cell Biology. 1975;67:835–851. doi: 10.1083/jcb.67.3.835. PubMed DOI PMC

Bonardi F, Halza E, Walko M, Du Plessis F, Nouwen N, Feringa BL, Driessen AJ. Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules. PNAS. 2011;108:7775–7780. doi: 10.1073/pnas.1101705108. PubMed DOI PMC

Briggs MS, Cornell DG, Dluhy RA, Gierasch LM. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science. 1986;233:206–208. doi: 10.1126/science.2941862. PubMed DOI

Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 1990;62:649–657. doi: 10.1016/0092-8674(90)90111-Q. PubMed DOI

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Capponi S, Heyden M, Bondar AN, Tobias DJ, White SH. Anomalous behavior of water inside the SecY translocon. PNAS. 2015;112:9016–9021. doi: 10.1073/pnas.1424483112. PubMed DOI PMC

Collinson I, Breyton C, Duong F, Tziatzios C, Schubert D, Or E, Rapoport T, Kühlbrandt W. Projection structure and oligomeric properties of a bacterial core protein translocase. The EMBO Journal. 2001;20:2462–2471. doi: 10.1093/emboj/20.10.2462. PubMed DOI PMC

Corey RA, Allen WJ, Komar J, Masiulis S, Menzies S, Robson A, Collinson I. Unlocking the Bacterial secy translocon. Structure. 2016;24:518–527. doi: 10.1016/j.str.2016.02.001. PubMed DOI PMC

Corey RA, Pyle E, Allen WJ, Watkins DW, Casiraghi M, Miroux B, Arechaga I, Politis A, Collinson I. Specific cardiolipin-SecY interactions are required for proton-motive force stimulation of protein secretion. PNAS. 2018;115:7967–7972. doi: 10.1073/pnas.1721536115. PubMed DOI PMC

Davis CM, Cooper AK, Dyer RB. Fast helix formation in the B domain of protein A revealed by site-specific infrared probes. Biochemistry. 2015;54:1758–1766. doi: 10.1021/acs.biochem.5b00037. PubMed DOI PMC

Delano WL. The PyMOL Molecular Graphics System 2002

Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M. Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature. 1980;285:82–85. doi: 10.1038/285082a0. PubMed DOI

Engen JR. Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Analytical Chemistry. 2009;81:7870–7875. doi: 10.1021/ac901154s. PubMed DOI PMC

Englander SW, Kallenbach NR. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quarterly Reviews of Biophysics. 1983;16:521–655. doi: 10.1017/S0033583500005217. PubMed DOI

Erlandson KJ, Miller SB, Nam Y, Osborne AR, Zimmer J, Rapoport TA. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature. 2008a;455:984–987. doi: 10.1038/nature07439. PubMed DOI PMC

Erlandson KJ, Or E, Osborne AR, Rapoport TA. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. Journal of Biological Chemistry. 2008b;283:15709–15715. doi: 10.1074/jbc.M710356200. PubMed DOI PMC

Fessl T, Watkins D, Oatley P, Allen WJ, Corey RA, Horne J, Baldwin SA, Radford SE, Collinson I, Tuma R. Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLife. 2018;7:e35112. doi: 10.7554/eLife.35112. PubMed DOI PMC

Gold VAM, Robson A, Clarke AR, Collinson I. Allosteric Regulation of SecA. Journal of Biological Chemistry. 2007;282:17424–17432. doi: 10.1074/jbc.M702066200. PubMed DOI

Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I. The action of cardiolipin on the bacterial translocon. PNAS. 2010;107:10044–10049. doi: 10.1073/pnas.0914680107. PubMed DOI PMC

Gold VA, Whitehouse S, Robson A, Collinson I. The dynamic action of SecA during the initiation of protein translocation. Biochemical Journal. 2013;449:695–705. doi: 10.1042/BJ20121314. PubMed DOI PMC

Gonsberg A, Jung S, Ulbrich S, Origi A, Ziska A, Baier M, Koch HG, Zimmermann R, Winklhofer KF, Tatzelt J. The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. Journal of Biological Chemistry. 2017;292:21383–21396. doi: 10.1074/jbc.M117.788067. PubMed DOI PMC

Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006;22:2695–2696. doi: 10.1093/bioinformatics/btl461. PubMed DOI

Gumbart J, Chipot C, Schulten K. Free energy of nascent-chain folding in the translocon. Journal of the American Chemical Society. 2011;133:7602–7607. doi: 10.1021/ja2019299. PubMed DOI PMC

Hardesty B, Kramer G. Folding of a nascent peptide on the ribosome. Progress in Nucleic Acid Research and Molecular Biology. 2001;66:41–66. doi: 10.1016/S0079-6603(00)66026-9. PubMed DOI

Hartl F-U, Lecker S, Schiebel E, Hendrick JP, Wickner W. The binding cascade of SecB to SecA to SecYE mediates preprotein targeting to the E. coli plasma membrane. Cell. 1990;63:269–279. doi: 10.1016/0092-8674(90)90160-G. PubMed DOI

Haugland MM, Anderson EA, Lovett JE. Tuning the properties of nitroxide spin labels for use in electron paramagnetic resonance spectroscopy through chemical modification of the nitroxide framework. Electron Paramagnetic Resonance. 2016;25:1

Hendrick JP, Wickner W. SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 1991;266:24596–24600. PubMed

Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins: Structure, Function, and Genetics. 1998;33:417–429. doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8. PubMed DOI

Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Structure of the SecY complex unlocked by a preprotein mimic. Cell Reports. 2012;1:21–28. doi: 10.1016/j.celrep.2011.11.003. PubMed DOI PMC

Huber D, Cha MI, Debarbieux L, Planson AG, Cruz N, López G, Tasayco ML, Chaffotte A, Beckwith J. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. PNAS. 2005;102:18872–18877. doi: 10.1073/pnas.0509583102. PubMed DOI PMC

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance. 2006;30:473–498. doi: 10.1007/BF03166213. DOI

Jeschke G. DEER distance measurements on proteins. Annual Review of Physical Chemistry. 2012;63:419–446. doi: 10.1146/annurev-physchem-032511-143716. PubMed DOI

Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G. A series of PDB related databases for everyday needs. Nucleic Acids Research. 2011;39:D411–D419. doi: 10.1093/nar/gkq1105. PubMed DOI PMC

Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Jungnickel B, Rapoport TA, Hartmann E. Protein translocation: common themes from bacteria to man. FEBS Letters. 1994;346:73–77. doi: 10.1016/0014-5793(94)00367-X. PubMed DOI

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI

Konermann L, Pan J, Liu YH. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011;40:1224–1234. doi: 10.1039/C0CS00113A. PubMed DOI

Krivov GG, Shapovalov MV, Dunbrack RL. Improved prediction of protein side-chain conformations with SCWRL4. Proteins: Structure, Function, and Bioinformatics. 2009;77:778–795. doi: 10.1002/prot.22488. PubMed DOI PMC

Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature. 2016;531:395–399. doi: 10.1038/nature17163. PubMed DOI PMC

Liang FC, Bageshwar UK, Musser SM. Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Molecular Biology of the Cell. 2009;20:4256–4266. doi: 10.1091/mbc.e09-01-0075. PubMed DOI PMC

Lu J, Deutsch C. Folding zones inside the ribosomal exit tunnel. Nature Structural & Molecular Biology. 2005;12:1123–1129. doi: 10.1038/nsmb1021. PubMed DOI

Lucent D, Vishal V, Pande VS. Protein folding under confinement: a role for solvent. PNAS. 2007;104:10430–10434. doi: 10.1073/pnas.0608256104. PubMed DOI PMC

Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI

Martin RE, Pannier M, Diederich F, Gramlich V, Hubrich M, Spiess HW. Determination of end-to-end distances in a series of tempo diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment. Angewandte Chemie International Edition. 1998;37:2833–2837. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7. PubMed DOI

McKnight CJ, Stradley SJ, Jones JD, Gierasch LM. Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region. PNAS. 1991;88:5799–5803. doi: 10.1073/pnas.88.13.5799. PubMed DOI PMC

Milov A, Salikhov K, Shirov M. Application of ELDOR in electron-spin echo for paramagnetic center space distribution in solids. Fizika Tverdogo Tela. 1981;23:975–982.

Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI

Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Progress in Nucleic Acid Research and Molecular Biology. 2001;66:107–157. doi: 10.1016/S0079-6603(00)66028-2. PubMed DOI

Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Molecular Physics. 1983;50:1055–1076. doi: 10.1080/00268978300102851. DOI

Park E, Rapoport TA. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature. 2011;473:239–242. doi: 10.1038/nature10014. PubMed DOI PMC

Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Piggot TJ, Sessions RB, Burston SG. Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation. Biochemistry. 2012;51:1707–1718. doi: 10.1021/bi201237a. PubMed DOI

Robson A, Booth AE, Gold VA, Clarke AR, Collinson I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. Journal of Molecular Biology. 2007;374:965–976. doi: 10.1016/j.jmb.2007.09.086. PubMed DOI

Robson A, Gold VA, Hodson S, Clarke AR, Collinson I. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. PNAS. 2009;106:5111–5116. doi: 10.1073/pnas.0809592106. PubMed DOI PMC

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn A. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. The EMBO Journal. 2004;23:294–301. doi: 10.1038/sj.emboj.7600063. PubMed DOI PMC

Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics. 1996;14:354–360. doi: 10.1016/S0263-7855(97)00009-X. PubMed DOI

Sousa da Silva AW, Vranken WF. ACPYPE - antechamber python parser interface. BMC Research Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC

Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS. MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure. 2015;23:1350–1361. doi: 10.1016/j.str.2015.05.006. PubMed DOI PMC

Stansfeld PJ, Sansom MS. From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. Journal of Chemical Theory and Computation. 2011;7:1157–1166. doi: 10.1021/ct100569y. PubMed DOI

Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, Tsukazaki T. Crystal structures of secyeg in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Reports. 2015;13:1561–1568. doi: 10.1016/j.celrep.2015.10.025. PubMed DOI

Todd AP, Cong J, Levinthal F, Levinthal C, Hubbell WL. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins: Structure, Function, and Genetics. 1989;6:294–305. doi: 10.1002/prot.340060312. PubMed DOI

Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJ. SecA supports a constant rate of preprotein translocation. Journal of Biological Chemistry. 2006;281:15709–15713. doi: 10.1074/jbc.M600205200. PubMed DOI

Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure. 2018;26:695–707. doi: 10.1016/j.str.2018.03.006. PubMed DOI

Ulbrandt ND, Newitt JA, Bernstein HD. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell. 1997;88:187–196. doi: 10.1016/S0092-8674(00)81839-5. PubMed DOI

Ulmschneider JP, Ulmschneider MB. United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. Journal of Chemical Theory and Computation. 2009;5:1803–1813. doi: 10.1021/ct900086b. PubMed DOI

Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. X-ray structure of a protein-conducting channel. Nature. 2004;427:36–44. doi: 10.1038/nature02218. PubMed DOI

van der Wolk JP, de Wit JG, Driessen AJ. The catalytic cycle of the escherichia coli SecA ATPase comprises two distinct preprotein translocation events. The EMBO Journal. 1997;16:7297–7304. doi: 10.1093/emboj/16.24.7297. PubMed DOI PMC

Wales TE, Engen JR. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrometry Reviews. 2006;25:158–170. doi: 10.1002/mas.20064. PubMed DOI

Zhang Q, Lahiri S, Banerjee T, Sun Z, Oliver D, Mukerji I. Alignment of the protein substrate hairpin along the SecA two-helix finger primes protein transport in Escherichia coli. PNAS. 2017;114:9343–9348. doi: 10.1073/pnas.1702201114. PubMed DOI PMC

Zhou HX, Dill KA. Stabilization of proteins in confined spaces. Biochemistry. 2001;40:11289–11293. doi: 10.1021/bi0155504. PubMed DOI

Zimmer J, Nam Y, Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 2008;455:936–943. doi: 10.1038/nature07335. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...