ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/I008675/1
Biotechnology and Biological Sciences Research Council - United Kingdom
099149/Z/12/Z
Wellcome - International
CZ.02.1.01/0.0/0.0/15_003/0000441
European Regional Development Fund - International
109854/Z/15/Z
Wellcome - International
BB/N015126/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
104632
Wellcome - International
BB/M003604/1
Biotechnology and Biological Sciences Research Council - United Kingdom
ep/m508214/1
Engineering and Physical Sciences Research Council - International
University Research Fellowship
Royal Society - International
PubMed
30601115
PubMed Central
PMC6335059
DOI
10.7554/elife.41803
PII: 41803
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, SecA, SecYEG, biochemistry, chemical biology, computational biology, electron paramagnetic resonance (EPR) spectroscopy, hydrogen deuterium exchange (HDX) mass spectrometry, molecular dynamics, protein translocation, systems biology,
- MeSH
- adenosintrifosfát chemie metabolismus MeSH
- adenosintrifosfatasy chemie metabolismus MeSH
- Escherichia coli metabolismus MeSH
- membránové transportní proteiny chemie metabolismus MeSH
- molekulární modely MeSH
- proteinové prekurzory metabolismus MeSH
- proteiny SecA chemie metabolismus MeSH
- proteiny z Escherichia coli chemie metabolismus MeSH
- sbalování proteinů * MeSH
- translokační kanály SEC chemie metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- adenosintrifosfatasy MeSH
- membránové transportní proteiny MeSH
- proteinové prekurzory MeSH
- proteiny SecA MeSH
- proteiny z Escherichia coli MeSH
- translokační kanály SEC MeSH
Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.
Department of Chemistry Imperial College London London United Kingdom
Department of Chemistry King's College London London United Kingdom
School of Biochemistry University of Bristol Bristol United Kingdom
SUPA School of Physics and Astronomy and BSRC University of St Andrews Scotland United Kingdom
University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
Zobrazit více v PubMed
Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife. 2016;5:e15598. doi: 10.7554/eLife.15598. PubMed DOI PMC
Antonoaea R, Fürst M, Nishiyama K, Müller M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry. 2008;47:5649–5656. doi: 10.1021/bi800233w. PubMed DOI
Arkowitz RA, Joly JC, Wickner W. Translocation can drive the unfolding of a preprotein domain. The EMBO Journal. 1993;12:243–253. doi: 10.1002/j.1460-2075.1993.tb05650.x. PubMed DOI PMC
Bauer BW, Rapoport TA. Mapping polypeptide interactions of the SecA ATPase during translocation. PNAS. 2009;106:20800–20805. doi: 10.1073/pnas.0910550106. PubMed DOI PMC
Bauer BW, Shemesh T, Chen Y, Rapoport TA. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell. 2014;157:1416–1429. doi: 10.1016/j.cell.2014.03.063. PubMed DOI PMC
Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI
Berks BC. The twin-arginine protein translocation pathway. Annual Review of Biochemistry. 2015;84:843–864. doi: 10.1146/annurev-biochem-060614-034251. PubMed DOI
Berliner LJ, Grunwald J, Hankovszky HO, Hideg K. A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Analytical Biochemistry. 1982;119:450–455. doi: 10.1016/0003-2697(82)90612-1. PubMed DOI
Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC
Bieker KL, Phillips GJ, Silhavy TJ. The sec and prl genes of Escherichia coli. Journal of Bioenergetics and Biomembranes. 1990;22:291–310. doi: 10.1007/BF00763169. PubMed DOI
Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. The Journal of Cell Biology. 1975;67:835–851. doi: 10.1083/jcb.67.3.835. PubMed DOI PMC
Bonardi F, Halza E, Walko M, Du Plessis F, Nouwen N, Feringa BL, Driessen AJ. Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules. PNAS. 2011;108:7775–7780. doi: 10.1073/pnas.1101705108. PubMed DOI PMC
Briggs MS, Cornell DG, Dluhy RA, Gierasch LM. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science. 1986;233:206–208. doi: 10.1126/science.2941862. PubMed DOI
Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 1990;62:649–657. doi: 10.1016/0092-8674(90)90111-Q. PubMed DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Capponi S, Heyden M, Bondar AN, Tobias DJ, White SH. Anomalous behavior of water inside the SecY translocon. PNAS. 2015;112:9016–9021. doi: 10.1073/pnas.1424483112. PubMed DOI PMC
Collinson I, Breyton C, Duong F, Tziatzios C, Schubert D, Or E, Rapoport T, Kühlbrandt W. Projection structure and oligomeric properties of a bacterial core protein translocase. The EMBO Journal. 2001;20:2462–2471. doi: 10.1093/emboj/20.10.2462. PubMed DOI PMC
Corey RA, Allen WJ, Komar J, Masiulis S, Menzies S, Robson A, Collinson I. Unlocking the Bacterial secy translocon. Structure. 2016;24:518–527. doi: 10.1016/j.str.2016.02.001. PubMed DOI PMC
Corey RA, Pyle E, Allen WJ, Watkins DW, Casiraghi M, Miroux B, Arechaga I, Politis A, Collinson I. Specific cardiolipin-SecY interactions are required for proton-motive force stimulation of protein secretion. PNAS. 2018;115:7967–7972. doi: 10.1073/pnas.1721536115. PubMed DOI PMC
Davis CM, Cooper AK, Dyer RB. Fast helix formation in the B domain of protein A revealed by site-specific infrared probes. Biochemistry. 2015;54:1758–1766. doi: 10.1021/acs.biochem.5b00037. PubMed DOI PMC
Delano WL. The PyMOL Molecular Graphics System 2002
Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M. Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature. 1980;285:82–85. doi: 10.1038/285082a0. PubMed DOI
Engen JR. Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Analytical Chemistry. 2009;81:7870–7875. doi: 10.1021/ac901154s. PubMed DOI PMC
Englander SW, Kallenbach NR. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quarterly Reviews of Biophysics. 1983;16:521–655. doi: 10.1017/S0033583500005217. PubMed DOI
Erlandson KJ, Miller SB, Nam Y, Osborne AR, Zimmer J, Rapoport TA. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature. 2008a;455:984–987. doi: 10.1038/nature07439. PubMed DOI PMC
Erlandson KJ, Or E, Osborne AR, Rapoport TA. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. Journal of Biological Chemistry. 2008b;283:15709–15715. doi: 10.1074/jbc.M710356200. PubMed DOI PMC
Fessl T, Watkins D, Oatley P, Allen WJ, Corey RA, Horne J, Baldwin SA, Radford SE, Collinson I, Tuma R. Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLife. 2018;7:e35112. doi: 10.7554/eLife.35112. PubMed DOI PMC
Gold VAM, Robson A, Clarke AR, Collinson I. Allosteric Regulation of SecA. Journal of Biological Chemistry. 2007;282:17424–17432. doi: 10.1074/jbc.M702066200. PubMed DOI
Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I. The action of cardiolipin on the bacterial translocon. PNAS. 2010;107:10044–10049. doi: 10.1073/pnas.0914680107. PubMed DOI PMC
Gold VA, Whitehouse S, Robson A, Collinson I. The dynamic action of SecA during the initiation of protein translocation. Biochemical Journal. 2013;449:695–705. doi: 10.1042/BJ20121314. PubMed DOI PMC
Gonsberg A, Jung S, Ulbrich S, Origi A, Ziska A, Baier M, Koch HG, Zimmermann R, Winklhofer KF, Tatzelt J. The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. Journal of Biological Chemistry. 2017;292:21383–21396. doi: 10.1074/jbc.M117.788067. PubMed DOI PMC
Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006;22:2695–2696. doi: 10.1093/bioinformatics/btl461. PubMed DOI
Gumbart J, Chipot C, Schulten K. Free energy of nascent-chain folding in the translocon. Journal of the American Chemical Society. 2011;133:7602–7607. doi: 10.1021/ja2019299. PubMed DOI PMC
Hardesty B, Kramer G. Folding of a nascent peptide on the ribosome. Progress in Nucleic Acid Research and Molecular Biology. 2001;66:41–66. doi: 10.1016/S0079-6603(00)66026-9. PubMed DOI
Hartl F-U, Lecker S, Schiebel E, Hendrick JP, Wickner W. The binding cascade of SecB to SecA to SecYE mediates preprotein targeting to the E. coli plasma membrane. Cell. 1990;63:269–279. doi: 10.1016/0092-8674(90)90160-G. PubMed DOI
Haugland MM, Anderson EA, Lovett JE. Tuning the properties of nitroxide spin labels for use in electron paramagnetic resonance spectroscopy through chemical modification of the nitroxide framework. Electron Paramagnetic Resonance. 2016;25:1
Hendrick JP, Wickner W. SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 1991;266:24596–24600. PubMed
Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins: Structure, Function, and Genetics. 1998;33:417–429. doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8. PubMed DOI
Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Structure of the SecY complex unlocked by a preprotein mimic. Cell Reports. 2012;1:21–28. doi: 10.1016/j.celrep.2011.11.003. PubMed DOI PMC
Huber D, Cha MI, Debarbieux L, Planson AG, Cruz N, López G, Tasayco ML, Chaffotte A, Beckwith J. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. PNAS. 2005;102:18872–18877. doi: 10.1073/pnas.0509583102. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance. 2006;30:473–498. doi: 10.1007/BF03166213. DOI
Jeschke G. DEER distance measurements on proteins. Annual Review of Physical Chemistry. 2012;63:419–446. doi: 10.1146/annurev-physchem-032511-143716. PubMed DOI
Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G. A series of PDB related databases for everyday needs. Nucleic Acids Research. 2011;39:D411–D419. doi: 10.1093/nar/gkq1105. PubMed DOI PMC
Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI
Jungnickel B, Rapoport TA, Hartmann E. Protein translocation: common themes from bacteria to man. FEBS Letters. 1994;346:73–77. doi: 10.1016/0014-5793(94)00367-X. PubMed DOI
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI
Konermann L, Pan J, Liu YH. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011;40:1224–1234. doi: 10.1039/C0CS00113A. PubMed DOI
Krivov GG, Shapovalov MV, Dunbrack RL. Improved prediction of protein side-chain conformations with SCWRL4. Proteins: Structure, Function, and Bioinformatics. 2009;77:778–795. doi: 10.1002/prot.22488. PubMed DOI PMC
Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature. 2016;531:395–399. doi: 10.1038/nature17163. PubMed DOI PMC
Liang FC, Bageshwar UK, Musser SM. Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Molecular Biology of the Cell. 2009;20:4256–4266. doi: 10.1091/mbc.e09-01-0075. PubMed DOI PMC
Lu J, Deutsch C. Folding zones inside the ribosomal exit tunnel. Nature Structural & Molecular Biology. 2005;12:1123–1129. doi: 10.1038/nsmb1021. PubMed DOI
Lucent D, Vishal V, Pande VS. Protein folding under confinement: a role for solvent. PNAS. 2007;104:10430–10434. doi: 10.1073/pnas.0608256104. PubMed DOI PMC
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI
Martin RE, Pannier M, Diederich F, Gramlich V, Hubrich M, Spiess HW. Determination of end-to-end distances in a series of tempo diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment. Angewandte Chemie International Edition. 1998;37:2833–2837. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7. PubMed DOI
McKnight CJ, Stradley SJ, Jones JD, Gierasch LM. Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region. PNAS. 1991;88:5799–5803. doi: 10.1073/pnas.88.13.5799. PubMed DOI PMC
Milov A, Salikhov K, Shirov M. Application of ELDOR in electron-spin echo for paramagnetic center space distribution in solids. Fizika Tverdogo Tela. 1981;23:975–982.
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Progress in Nucleic Acid Research and Molecular Biology. 2001;66:107–157. doi: 10.1016/S0079-6603(00)66028-2. PubMed DOI
Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Molecular Physics. 1983;50:1055–1076. doi: 10.1080/00268978300102851. DOI
Park E, Rapoport TA. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature. 2011;473:239–242. doi: 10.1038/nature10014. PubMed DOI PMC
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Piggot TJ, Sessions RB, Burston SG. Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation. Biochemistry. 2012;51:1707–1718. doi: 10.1021/bi201237a. PubMed DOI
Robson A, Booth AE, Gold VA, Clarke AR, Collinson I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. Journal of Molecular Biology. 2007;374:965–976. doi: 10.1016/j.jmb.2007.09.086. PubMed DOI
Robson A, Gold VA, Hodson S, Clarke AR, Collinson I. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. PNAS. 2009;106:5111–5116. doi: 10.1073/pnas.0809592106. PubMed DOI PMC
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn A. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. The EMBO Journal. 2004;23:294–301. doi: 10.1038/sj.emboj.7600063. PubMed DOI PMC
Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics. 1996;14:354–360. doi: 10.1016/S0263-7855(97)00009-X. PubMed DOI
Sousa da Silva AW, Vranken WF. ACPYPE - antechamber python parser interface. BMC Research Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC
Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS. MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure. 2015;23:1350–1361. doi: 10.1016/j.str.2015.05.006. PubMed DOI PMC
Stansfeld PJ, Sansom MS. From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. Journal of Chemical Theory and Computation. 2011;7:1157–1166. doi: 10.1021/ct100569y. PubMed DOI
Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, Tsukazaki T. Crystal structures of secyeg in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Reports. 2015;13:1561–1568. doi: 10.1016/j.celrep.2015.10.025. PubMed DOI
Todd AP, Cong J, Levinthal F, Levinthal C, Hubbell WL. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins: Structure, Function, and Genetics. 1989;6:294–305. doi: 10.1002/prot.340060312. PubMed DOI
Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJ. SecA supports a constant rate of preprotein translocation. Journal of Biological Chemistry. 2006;281:15709–15713. doi: 10.1074/jbc.M600205200. PubMed DOI
Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure. 2018;26:695–707. doi: 10.1016/j.str.2018.03.006. PubMed DOI
Ulbrandt ND, Newitt JA, Bernstein HD. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell. 1997;88:187–196. doi: 10.1016/S0092-8674(00)81839-5. PubMed DOI
Ulmschneider JP, Ulmschneider MB. United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. Journal of Chemical Theory and Computation. 2009;5:1803–1813. doi: 10.1021/ct900086b. PubMed DOI
Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. X-ray structure of a protein-conducting channel. Nature. 2004;427:36–44. doi: 10.1038/nature02218. PubMed DOI
van der Wolk JP, de Wit JG, Driessen AJ. The catalytic cycle of the escherichia coli SecA ATPase comprises two distinct preprotein translocation events. The EMBO Journal. 1997;16:7297–7304. doi: 10.1093/emboj/16.24.7297. PubMed DOI PMC
Wales TE, Engen JR. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrometry Reviews. 2006;25:158–170. doi: 10.1002/mas.20064. PubMed DOI
Zhang Q, Lahiri S, Banerjee T, Sun Z, Oliver D, Mukerji I. Alignment of the protein substrate hairpin along the SecA two-helix finger primes protein transport in Escherichia coli. PNAS. 2017;114:9343–9348. doi: 10.1073/pnas.1702201114. PubMed DOI PMC
Zhou HX, Dill KA. Stabilization of proteins in confined spaces. Biochemistry. 2001;40:11289–11293. doi: 10.1021/bi0155504. PubMed DOI
Zimmer J, Nam Y, Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 2008;455:936–943. doi: 10.1038/nature07335. PubMed DOI PMC