Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30613461
PubMed Central
PMC6302881
DOI
10.1186/s12302-018-0183-8
PII: 183
Knihovny.cz E-zdroje
- Klíčová slova
- Biomonitoring, Chemical transport models, Correlation analysis, Ecological classification, Linear discriminant analysis, Logistic regression,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey. RESULTS: Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75-100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of < 40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (= above-average) or low (= below-average) correlation coefficients. CONCLUSIONS: LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites.
Chair of Landscape Ecology University of Vechta Vechta Germany
Dunarea de Jos University of Galati Galati Romania
Green Infrastructure Ltd Zagreb Croatia
Institute of Landscape Ecology Slovak Academy of Sciences Bratislava Slovak Republic
Ivanovo State University of Chemistry and Technology Ivanovo Russia
Jožef Stefan Institute Ljubljana Slovenia
Meteorological Synthesizing Centre East Moscow Russia
National Botanical Garden Academy of Science of Ukraine Kiev Ukraine
National Museum of Natural History Paris France
Natural Resources Institute Finland Oulu Finland
Norwegian Institute for Air Research Kjeller Norway
Norwegian Meteorological Institute Oslo Norway
Norwegian University of Science and Technology Trondheim Norway
Silva Tarouca Research Institute for Landscape and Ornamental Gardening Průhonice Czech Republic
Slovenian Forestry Institute Ljubljana Slovenia
Ss Cyril and Methodius University Skopje Macedonia
Tallinn Botanic Garden Tallinn Estonia
University of La Rioja Logroño Spain
University of Navarra Navarra Spain
University of Santiago de Compostela Santiago de Compostela Spain
University of Tirana Tirana Albania
University of Vienna Vienna Austria
University of Vlora Vlorë Albania
Valahia University of Targoviste Targoviste Romania
W Szafer Institute of Botany Polish Academy of Sciences Kraków Poland
Zobrazit více v PubMed
Tørseth K, Aas W, Breivik K, Fjæraa AM, Fiebig M, Hjellbrekke AG, Lund Myhre C, Solberg S, Yttri KE. Introduction to the European monitoring and evaluation programme (EMEP) and observed atmospheric composition change during 1972 and 2009. Atmos Chem Phys. 2012;12:5447–5481. doi: 10.5194/acp-12-5447-2012. DOI
Frontasyeva MV, Steinnes E, Harmens H. Monitoring long-term and large-scale deposition of air pollutants based on moss analysis. In: Aničić Urošević M, Vuković G, Tomašević M, editors. Biomonitoring of air pollution using mosses and lichens Passive and active approach—state of the art and perspectives. Hauppauge: Nova Science Publishers; 2016. pp. 1–20.
Harmens H, Mills G, Hayes F, Norris DA, Sharps K. Twenty-eight years of ICP vegetation: an overview of its activities. Ann Bot. 2015;5:31–43.
Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, Blum O, Cucu-Man S-M, Dam M, De Temmerman L, Ene A, Fernández JA, Martinez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pihl Karlsson G, Piispanen J, Poikolainen J, Santamaria JM, Skudnik M, Spiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Todoran R, Yurukova L, Zechmeister HG. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut. 2015;200:93–104. doi: 10.1016/j.envpol.2015.01.036. PubMed DOI
Dreyer A, Nickel S, Schröder W. (Persistent) Organic pollutants in Germany: results from a pilot study within the 2015 moss survey. Environ Sci Eur. 2018;30(43):1–14. doi: 10.1186/s12302-018-0172-y. PubMed DOI PMC
Holy M, Schröder W, Pesch R, Harmens H, Ilyin I, Steinnes E, Alber R, Aleksiayenak Y, Blum O, Coskun M, Dam M, De Temmerman L, Frolova M, Frontasyeva M, Gonzalez Miqueo L, Grodzinska K, Jeran Z, Korzekwa S, Krmar M, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnusson S, Mankovska B, Piispanen J, Rühling Å, Santamaria J, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG. First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000, and 2005. J Atmos Chem. 2010;63:109–124. doi: 10.1007/s10874-010-9160-3. DOI
Schröder W, Holy M, Pesch R, Harmens H, Fagerli H, Alber R, Coşkun M, De Temmerman L, Frolova M, González-Miqueo L, Jeran Z, Kubin E, Leblond S, Liiv S, Maňkovská B, Piispanen J, Santamaría JM, Simonèiè P, Suchara I, Yurukova L, Thöni L, Zechmeister HG. First europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses. Atmos Environ. 2010;4:3485–3491. doi: 10.1016/j.atmosenv.2010.06.024. DOI
Schröder W, Holy M, Pesch R, Harmens H, Ilyin I, Steinnes E, Alber R, Aleksiayenak Y, Blum O, Coskun M, Dam M, De Temmerman L, Frolova M, Frontasyeva M, Gonzalez Miqueo L, Grodzinska K, Jeran Z, Korzekwa S, Krmar M, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnusson S, Mankovska B, Piispanen J, Rühling Å, Santamaria J, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG. b. Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J Soils Sediments. 2010;10:1572–1584. doi: 10.1007/s11368-010-0254-y. DOI
Harmens H, Ilyin I, Mills G, Aboal JR, Alber R, Blum O, Coskun M, De Temmerman L, Fernandez JA, Figuera R, Frontasyeva M, Godzik B, Goltsova N, Jeran Z, Korzekwa S, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnusson SH, Mankovska B, Nikodemus O, Pesch R, Poikolainen J, Radnovic D, Rühling A, Santamaria JM, Schröder W, Spiric Z, Stafilov T, Steinnes E, Suchara I, Tabors G, Thöni L, Turcsanyi G, Yurukova L, Zechmeister HG. Country-specific correlations across Europe between modelled atmospheric cadmium and lead deposition and concentration in mosses. Environ Pollut. 2012;166:1–9. doi: 10.1016/j.envpol.2012.02.013. PubMed DOI
Schröder W, Pesch R, Hertel A, Schönrock S, Harmens H, Mills G, Ilyin I. Correlation between atmospheric deposition of Cd, Hg and Pb and their concentrations in mosses specified for ecological land classes covering Europe. Atmos Pollut Res. 2013;4:267–274. doi: 10.5094/APR.2013.029. DOI
Travnikov O, Ilyin I (2005) Regional model MSCE-HM of heavy metal transboundary air pollution in Europe. EMEP/MSC-E technical report 6/2005, p 59
Meyer M, Schröder W, Pesch R, Steinnes E, Uggerud HT. Multivariate association of regional factors with heavy metal concentrations in moss and natural surface soil sampled across Norway between 1990 and 2010. J Soils Sediments. 2015;15:410–422. doi: 10.1007/s11368-014-0999-9. DOI
Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT. Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990–2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmos Environ. 2014;99:85–93. doi: 10.1016/j.atmosenv.2014.09.059. DOI
Skudnik M, Jeran Z, Batič F, Simončič P, Kastelec D. Potential environmental factors that influence the nitrogen concentration and δ15 N values in the moss Hypnum cupressiforme collected inside and outside canopy drip lines. Environ Pollut. 2015;198:78–85. doi: 10.1016/j.envpol.2014.12.032. PubMed DOI
Hornsmann I, Pesch R, Schmidt G, Schröder W (2008) Calculation of an ecological land classification of Europe (ELCE) and its application for optimising environmental monitoring networks. In: Car A, Griesebner G, Strobl J (eds). Geospatial Crossroads @ GI_Forum ‘08: proceedings of the Geoinformatics Forum Salzburg. Wichmann, Heidelberg, pp 140–151
Schaap M, Sauter F, Timmermans RMA, Roemer M, Velders G, Beck J, Builjes PJH. The LOTOS–EUROS model: description, validation and latest developments. Int J Environ Pollut. 2008;32(2):270–290. doi: 10.1504/IJEP.2008.017106. DOI
EEA (2016) Corine Land Cover 2006 (CLC 2006). Available via DIALOG. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2. Accessed 09 Feb 2016
EEA (2016) Global Land Cover 2000—Europe (GLC 2000). Available via DIALOG. http://www.eea.europa.eu/data-and-maps/data/global-land-cover-2000-europe. Accessed 09 Feb 2016
ICP Vegetation (2010) Heavy metals in European Mosses: 2010 survey. Monitoring manual, international cooperative programme on effects od air pollution on natural vegetation and crops, ICP Coordination Centre, CEH Bangor, pp 1–16. http://nora.nerc.ac.uk/id/eprint/9952/1/UNECEHEAVYMETALSMOSSMANUAL2010POPsadaptedfinal_220510_.pdf. Accessed 23 Nov 2018
Hill MO, Bell N, Bruggeman-Nannenga MA, Brugués M, Cano MJ, Enroth J, Flatberg KI, Frahm J-P, Gallego MT, Garilleti R, Guerra J, Hedenäs L, Holyoak DT, Hyvönen J, Ignatov MS, Lara F, Mazimpaka V, Muñoz J, Söderström L. An annotated checklist of the mosses of Europe and Macaronesia. J Bryol. 2006;28:198–267. doi: 10.1179/174328206X119998. DOI
Builtjes P, Schaap M, Jonkers S, Nagel HD, Nickel S, Schlutow A, Schröder W (2017) Impacts of heavy metal emissions on air quality and ecosystems in Germany (part 1). Final report on behalf of the German Federal Environmental Agency, Dessau-Roßlau, p 81
Aas W, Breivik K (2009) Heavy metals and POP measurements 2007. EMEP/CCC-report 3/2009. Norwegian Institute for Air Research, Kjeller, Norway. https://www.nilu.no/projects/ccc/reports/cccr3-2009.pdf. Accessed 23 Nov 2018
Bohn U, Hettwer C, Gollub G (eds) (2005) Application and analysis of the map of the natural vegetation of Europe, vol 156. Bonn, BfN–Skripten (Bundesamt fur Naturschutz), p 452
Hastings DA, Dunbar PK, Elphingstone GM, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant NA, Logan TL, Muller JP, Schreier G, Macdonald JS (1999) The global land one–kilometer base elevation (GLOBE) digital elevation model version 1.0., National Oceanic and Atmospheric Administration, National Geophysical Data Center, USA https://www.ngdc.noaa.gov/mgg/topo/report/globedocumentationmanual.pdf. Accessed 23 Nov 2018
FAO (Food and Agriculture Organization of the United Nations)/IIASA (International Institute of Applied Systems Analysis)/ISRIC-World Soil Information/ISS-CAS (Institute of Soil Science, Chinese Academy of Science)/JRC (Joint Research Centre of the European Commission) (2009) Harmonized World Soil Database (version 1.1). Italy and IIASA, Laxenburg, Austria, FAO, Rome. http://www.fao.org/3/a-aq361e.pdf. Accessed 23 Nov 2018
New M, Lister D, Hulme M, Makin I. A high-resolution data set of surface climate over global land areas. Climate Res. 2002;21:1–25. doi: 10.3354/cr021001. DOI
Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Belmont: Wadsworth; 1984.
Schröder W, Nickel S, Schönrock S, Schmalfuß R, Wosniok W, Meyer M, Harmens H, Frontasyeva MV, Alber R, Aleksiayenak J, Barandovski L, Blum O, Carballeira A, Dam M, Danielsson H, de Temmermann L, Dunaev AM, Godzik B, Hoydal K, Jeran Z, Pihl Karlsson G, Lazo P, Leblond S, Lindroos J, Liiv S, Magnússon SH, Mankovska B, Núñez-Olivera E, Piispanen J, Poikolainen J, Popescu IV, Qarri F, Santamaria JM, Skudnik M, Špiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Uggerud HT, Zechmeister HG. Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales. Ann For Sci. 2017;74(31):1–23.
Schröder W, Nickel S, Schönrock S, Meyer M, Wosniok W, Harmens H, Frontasyeva MV, Alber R, Aleksiayenak J, Barandovski L, Danielsson H, de Temmermann L, Fernández Escribano A, Godzik B, Jeran Z, Pihl Karlsson G, Lazo P, Leblond S, Lindroos A-J, Liiv S, Magnússon SH, Mankovska B, Martínez-Abaigar J, Piispanen J, Poikolainen J, Popescu IV, Qarri F, Santamaria JM, Skudnik M, Špiric Z, Stafilov T, Steinnes E, Stihi C, Thöni L, Uggerud HT, Zechmeister HG. Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environ Sci Pollut Res. 2016;23:10457–10476. doi: 10.1007/s11356-016-6577-5. PubMed DOI
Brosius F. SPSS 21. Heidelberg: Mitp/bhv; 2013. p. 1054.
Backhaus K, Erichson B, Plinke W, Weiber R (2011) Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 13, überarb. Aufl., Springer, Berlin
Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936;7(2):179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x. DOI
Varmuza K, Filzmoser P. Introduction to multivariate statistical analysis in chemometrics. Boca Raton: CRC Press, Taylor & Francis; 2008. p. 321.
Nickel S, Schröder W, Wosniok W, Harmens H, Frontasyeva MV, Alber R, Aleksiayenak J, Barandovski L, Blum O, Danielsson H, de Temmermann L, Dunaev A, Fagerli H, Godzik B, Iliyn I, Jonkers S, Jeran Z, Pihl Karlsson G, Lazo P, Leblond S, Liiv S, Magnússon SH, Mankovska B, Martínez-Abaigar J, Piispanen J, Poikolainen J, Popescu IV, Qarri F, Radnovic D, Santamaria JM, Schaap M, Skudnik M, Špiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Uggerud HT, Zechmeister HG. Modelling and mapping heavy metal and nitrogen concentrations in moss in 2010 throughout Europe by applying random forests models. Atmos Environ. 2017;156:146–159. doi: 10.1016/j.atmosenv.2017.02.032. DOI
Schönwiese CD. Praktische Statistik für Meteorologen und Geowissenschaftler. Berlin: Gebrüder Borntraeger Verlag; 2000. p. 298.
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. http://www.R-project.org/. Accessed 19 June 2017
Venables WN, Ripley BD. Modern applied statistics with S. 4. New York: Springer; 2002.
Aboal JR, Fernandez JA, Boquete T, Carballeira A. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci Total Environ. 2010;40:6291–6297. doi: 10.1016/j.scitotenv.2010.09.013. PubMed DOI
Harmens H, Norris DA, Koerber GR, Buse A, Steinnes E, Rühling A. Temporal trends (1990–2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environ Pollut. 2008;151:368–376. doi: 10.1016/j.envpol.2007.06.043. PubMed DOI
Nickel S, Schröder W. Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals. Environ Sci Pollut Res. 2017;24:11919–11939. doi: 10.1007/s11356-015-6006-1. PubMed DOI
Barandovski L, Frontasyeva VM, Stafilov T, Šajn R, Ostrovnaya MT. Multielement atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res. 2015;22:16077–16097. doi: 10.1007/s11356-015-4787-x. PubMed DOI
Qarri F, Lazo P, Stafilov T, Frontasyeva M, Harmens H, Bekteshi L, Baceva K, Goryainova Z. Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res. 2014;21:2506–2518. doi: 10.1007/s11356-013-2091-1. PubMed DOI
Špirić Z, Frontasyeva VM, Stafilov T. Multi-element atmospheric deposition study in Croatia. Int J Environ Anal Chem. 2012;92(10):1402–1408. doi: 10.1080/03067319.2011.561336. DOI
Steinnes E. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci Total Environ. 1995;160(161):243–249. doi: 10.1016/0048-9697(95)04360-D. DOI
Meharg AA, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 2002;154(1):29–43. doi: 10.1046/j.1469-8137.2002.00363.x. DOI
Husak VV. Copper and copper-containing pesticides: metabolism, toxicity and oxidative stress. J Vasyl Stefanyk Precarpathian Natl Univ. 2015;2:39–51.
Berg T, Fjeld E, Steinnes E. Atmospheric mercury in Norway: contributions from different sources. Sci Total Environ. 2006;368(1):3–9. doi: 10.1016/j.scitotenv.2005.09.059. PubMed DOI
Lindqvist O, Rodhe H. Atmospheric mercury—a review. Tellus B. 1985;37B:136–159. doi: 10.1111/j.1600-0889.1985.tb00062.x. DOI
Nickel S, Schröder W. Reorganisation of a long-term monitoring network using moss as bioindicator for atmospheric deposition in Germany. Ecological Indicators. 2017;76:194–206. doi: 10.1016/j.ecolind.2017.01.005. DOI