Differentiation of Taxonomically Closely Related Species of the Genus Acinetobacter Using Raman Spectroscopy and Chemometrics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NORTE-01-0145-FEDER-000024
Fundação para a Ciência e a Tecnologia
PubMed
30621147
PubMed Central
PMC6337300
DOI
10.3390/molecules24010168
PII: molecules24010168
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, haemolytic clade, species, typing, vibrational spectroscopy,
- MeSH
- Acinetobacter baumannii chemie klasifikace izolace a purifikace MeSH
- Acinetobacter calcoaceticus chemie klasifikace izolace a purifikace MeSH
- bakteriologické techniky MeSH
- infekce spojené se zdravotní péčí diagnóza mikrobiologie MeSH
- klasifikace MeSH
- lidé MeSH
- Ramanova spektroskopie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In recent years, several efforts have been made to develop quick and low cost bacterial identification methods. Genotypic methods, despite their accuracy, are laborious and time consuming, leaving spectroscopic methods as a potential alternative. Mass and infrared spectroscopy are among the most reconnoitered techniques for this purpose, with Raman having been practically unexplored. Some species of the bacterial genus Acinetobacter are recognized as etiological agents of nosocomial infections associated with high rates of mortality and morbidity, which makes their accurate identification important. The goal of this study was to assess the ability of Raman spectroscopy to discriminate between 16 Acinetobacter species belonging to two phylogroups containing taxonomically closely related species, that is, the Acinetobacter baumannii-Acinetobacter calcoaceticus complex (six species) and haemolytic clade (10 species). Bacterial spectra were acquired without the need for any sample pre-treatment and were further analyzed with multivariate data analysis, namely partial least squares discriminant analysis (PLSDA). Species discrimination was achieved through a series of sequential PLSDA models, with the percentage of correct species assignments ranging from 72.1% to 98.7%. The obtained results suggest that Raman spectroscopy is a promising alternative for identification of Acinetobacter species.
Zobrazit více v PubMed
Quintelas C., Ferreira E.C., Lopes J., Sousa C. An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnol. J. 2018;13 doi: 10.1002/biot.201700449. PubMed DOI
Lu X., Al-Qadiri H.M., Lin M., Rasco B.A. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioproc. Technol. 2011;4:919–935. doi: 10.1007/s11947-011-0516-8. DOI
Vaz M., Meirinhos-Soares L., Sousa C., Ramirez M., Melo-Cristino J., Lopes J. Serotypes discrimination of encapsulated Streptococcus pneumoniae strains by Fourier-transform infrared spectroscopy. J. Microbiol. Methods. 2013;93:102–107. doi: 10.1016/j.mimet.2013.02.008. PubMed DOI
van de Vossenberg J., Tervahauta H., Maquelin K., Blokker-Koopmans C.H.W., Uytewaal-Aarts M., van der Kooij D., van Wezel A.P., van der Gaag B. Identification of bacteria in drinking water with Raman. Anal. Methods. 2013;5:2679–2687. doi: 10.1039/c3ay40289d. DOI
Sousa C., Silva L., Grosso F., Nemec A., Lopes J., Peixe L. Discrimination of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species by Fourier transform infrared spectroscopy. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:1345–1353. doi: 10.1007/s10096-014-2078-y. PubMed DOI
Ghebremedhin M., Heitkamp R., Yesupriya S., Bradford C., Crane N.J. Accurate and rapid differentiation of Acinetobacter baumannii strains by Raman spectroscopy: A comparative study. J. Clin. Microbiol. 2017;55:2480–2490. doi: 10.1128/JCM.01744-16. PubMed DOI PMC
Sousa C., Silva L., Grosso F., Lopes J., Peixe L. Development of a FTIR-ATR based model for typing clinically relevant Acinetobacter baumannii clones belonging to ST98, ST103, ST208 and ST218. J. Photochem. Photobiol. B. 2014;133:108–114. doi: 10.1016/j.jphotobiol.2014.02.015. PubMed DOI
Sousa C., Botelho J., Grosso F., Silva L., Lopes J., Peixe L. Unsuitability of MALDI-TOF MS to discriminate Acinetobacter baumannii clones under our routine experimental conditions. Front. Microbiol. 2015;6:481. doi: 10.3389/fmicb.2015.00481. PubMed DOI PMC
Maquelin K., Dijkshoorn L., van der Reijdenb T.J.K., Puppels G.J. Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J. Microbiol. Methods. 2006;64:126–131. doi: 10.1016/j.mimet.2005.04.028. PubMed DOI
Dijkshoorn L., Nemec A., Seifert H. An increasing threat in the hospital: Multidrug resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007;5:939–951. doi: 10.1038/nrmicro1789. PubMed DOI
Cosgaya C., Marí-Almirall M., Van Assche A., Fernández-Orth D., Mosqueda N., Telli M., Huys G., Higgins P.G., Seifert H., Lievens B., et al. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. Int. J. Syst. Evol. Microbiol. 2016;66:4105–4111. PubMed
Nemec A., Krizova L., Maixnerova M., van der Reijden T.J.K., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU) Res. Microbiol. 2011;162:393–404. PubMed
Nemec A., Krizova L., Maixnerova M., Sedo O., Brisse S., Higgins P.G. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 2015;65:934–942. doi: 10.1099/ijs.0.000043. PubMed DOI
Nemec A., Radolfova-Krizova L., Maixnerova M., Vrestiakova E., Jezek P., Sedo O. Taxonomy of haemolytic and/or proteolytic strains of the genus Acinetobacter with the proposal of Acinetobacter courvalinii sp. nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacter dispersus sp. nov. (genomic species 17), Acinetobacter modestus sp. nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp. nov. Int. J. Syst. Evol. Microbiol. 2016;66:1673–1685. PubMed
Nemec A., Radolfova-Krizova L., Maixnerova M., Sedo O. Acinetobacter colistiniresistens sp. nov. (formerly genomic species 13 sensu Bouvet and Jeanjean and genomic species 14 sensu Tjernberg and Ursing), isolated from human infections and characterised by intrinsic resistance to polymyxins. Int. J. Syst. Evol. Microbiol. 2017;67:2134–2141. doi: 10.1099/ijsem.0.001903. PubMed DOI
Šedo O., Nemec A., Křížová L., Kačalová M., Zdráhal Z. Improvement of MALDI-TOF MS profiling for the differentiation of species within the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Syst. Appl. Microbiol. 2013;36:572–578. doi: 10.1016/j.syapm.2013.08.001. PubMed DOI
Šedo O., Radolfová-Křížová L., Nemec A., Zdráhal Z. Limitations of routine MALDI-TOF mass spectrometric identification of Acinetobacter species and remedial actions. J. Microbiol. Methods. 2018;154:79–85. doi: 10.1016/j.mimet.2018.10.009. PubMed DOI
de Oliveira F.S.S., Giana H.E., Silveira L. Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis. J. Biomed. Opt. 2012;17 doi: 10.1117/1.JBO.17.10.107004. PubMed DOI
Paret M.L., Sharma S.K., Green L.M., Alvarez A.M. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy. Appl. Spectrosc. 2010;64:433–441. doi: 10.1366/000370210791114293. PubMed DOI
Berger A.J., Zhu Q. Identification of oral bacteria by Raman microspectroscopy. J. Mod. Optic. 2013;50:15–17. doi: 10.1080/09500340308233569. DOI
Sengupta A., Mujacic M., Davis E.J. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2006;386:1379–1386. doi: 10.1007/s00216-006-0711-z. PubMed DOI
Liu T.Y., Chen Y., Wang H.H., Huang Y.L., Chao Y.C., Tsai K.T., Cheng W.C., Chuang C.Y., Tsai Y.H., Huang C.Y., et al. Differentiation of bacteria cell wall using Raman scattering enhanced by nanoparticle array. J. Nanosci. Nanotechnol. 2012;12:5004–5008. doi: 10.1166/jnn.2012.4941. PubMed DOI
Sousa C., Botelho J., Silva L., Grosso F., Nemec A., Lopes J., Peixe L. MALDI-TOF MS and chemometric based identification of Acinetobacter calcoaceticus-Acinetobacter baumannii complex species. Int. J. Med. Microbiol. 2014;304:669–677. doi: 10.1016/j.ijmm.2014.04.014. PubMed DOI
Nemec A., Radolfova-Krizova L., Maixnerova M., Nemec M., Clermont D., Bzdil J., Jezek P., Spanelova P. Revising the taxonomy of the Acinetobacter lwoffii group: The description of Acinetobacter pseudolwoffii sp. nov. and emended description of Acinetobacter lwoffii. Syst. Appl. Microbiol. 2018 doi: 10.1016/j.syapm.2018.10.004. PubMed DOI
Geladi P., Kowalsky B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta. 1986;185:1–17. doi: 10.1016/0003-2670(86)80028-9. DOI
Alsberg B.K., Kell D.B., Goodacre R. Variable selection in discriminant partial least-squares analysis. Anal. Chem. 1998;70:4126–4133. doi: 10.1021/ac980506o. PubMed DOI
Sousa C., Grosso F., Meirinhos-Soares L., Peixe L., Lopes J. Identification of carbapenem-resistant Acinetobacter baumannii clones using infrared spectroscopy. J. Biophotonics. 2014;7:287–294. doi: 10.1002/jbio.201200075. PubMed DOI
Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T.J.K., Vaneechoutte M., Dijkshoorn L. Acinetobacter beije-rinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int. J. Syst. Evol. Microbiol. 2009;59:118–124. doi: 10.1099/ijs.0.001230-0. PubMed DOI
Vaneechoutte M., Nemec A., Musílek M., van der Reijden T.J.K., van den Barselaar M., Tjernberg I., Calame W., Fani R., De Baere T., Dijkshoorn L. Description of Acinetobacter venetianus ex Di Cello et al. 1997 sp. nov. Int. J. Syst. Evol. Microbiol. 2009;59:1376–1381. doi: 10.1099/ijs.0.003541-0. PubMed DOI