Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

. 2019 May ; 25 (5) : 1591-1611. [epub] 20190225

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30628191

Grantová podpora
748625 Marie Curie - United Kingdom
PP00P3_179089 Swiss National Science Foundation - Switzerland
PP00P3_150698 Swiss National Science Foundation - Switzerland

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.

ARC Centre of Excellence for Mathematical and Statistical Frontiers and Institute for Future Environments School of Mathematical Sciences Queensland University of Technology Brisbane Qld Australia

Australian Rivers Institute Griffith University Nathan Qld Australia

Austrian Science Fund Vienna Austria

BC3 Basque Centre for Climate Change Leioa Spain

Center for Applied Geosciences Eberhard Karls Universität Tübingen Tübingen Germany

Centre for Freshwater Ecosystems La Trobe University Wodonga Vic Australia

Centre International de Recherche en Agronomie pour le Développement CIRAD UPR HortSys Montpellier France

Centre of Edaphology and Applied Biology of Segura Murcia Spain

Centro de Ciências Agrárias e Biológicas Universidade Estadual Vale do Acaraú Sobral Brazil

Departamento de Ecología y Biología Animal Universidad de Vigo Vigo Spain

Department of Aquatic Ecology Eawag The Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

Department of Biology and Ecology Faculty of Sciences and Mathematics University of Niš Niš Serbia

Department of Biology Faculty of Science University of Zagreb Zagreb Croatia

Department of Biology University of Montenegro Podgorica Montenegro

Department of Biology University of Oklahoma Norman Oklahoma

Department of Biology University of San Diego San Diego California

Department of Bioscience Aarhus University Silkeborg Denmark

Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic

Department of Civil Environmental and Mechanical Engineering Trento University Trento Italy

Department of Ecology and Environmental Science Umeå University Umeå Sweden

Department of Ecology and Hydrology Regional Campus of International Excellence 'Campus Mare Nostrum' University of Murcia Murcia Spain

Department of Ecology Berlin Institute of Technology Berlin Germany

Department of Environment and Science Queensland Government Brisbane Qld Australia

Department of Environmental Biology Biodiversity Data Analytics and Environmental Quality Group University of Navarra Pamplona Spain

Department of Environmental Science Policy and Management University of California Berkeley California

Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland

Department of Evolutionary Biology Ecology and Environmental Sciences Faculty of Biology Biodiversity Research Institute University of Barcelona Barcelona Spain

Department of Freshwater Conservation BTU Cottbus Senftenberg Bad Saarow Germany

Department of Freshwater Invertebrates Albany Museum Affiliated Research Institute of Rhodes University Grahamstown South Africa

Department of Geography University of California Berkeley California

Department of Geosciences Federal University of São João del Rei São João del Rei Brazil

Department of Limnology Institute for Evolution and Biodiversity University of Münster Germany

Department of Plant Biology and Ecology Faculty of Science and Technology University of the Basque Country Bilbao Spain

Department of Zoology University of Granada Granada Spain

Department of Zoology University of Otago Dunedin New Zealand

Ezemvelo KZN Wildlife Pietermaritzburg South Africa

Faculté d'Agronomie Département d'Aménagement et de Gestion des Ressources Naturelles Université de Parakou Parakou Benin

Faculty of Environmental Science and EULA Chile Center Universidad de Concepción Concepción Chile

Great Lakes Institute for Environmental Research University of Windsor Windsor Canada

Grup de Recerca Freshwater Ecology Hydrology and Management Universitat de Barcelona Barcelona Spain

INRA UAR 1275 DEPT EFPA Centre de recherche de Nancy Champenoux France

Institute for Applied Ecology University of Canberra Bruce Canberra ACT Australia

Institute for Ecological Chemistry Plant Analysis and Stored Product Protection Julius Kuehn Institute Berlin Germany

Institute of Biology Freie Universität Berlin Berlin Germany

Institute of Landscape Ecology and Site Evaluation University of Rostock Rostock Germany

Instituto de Biología Universidad de Antioquia Medellín Colombia

IRSTEA UR RIVERLY Centre de Lyon Villeurbanne Villeurbanne Cedex France

Laboratoire d'Écologie Alpine UMR CNRS UGA USMB 5553 Université Grenoble Alpes Grenoble France

Laboratoire d'Écologie et Gestion des Ecosystèmes Naturels University of Tlemcen Tlemcen Algeria

Laboratory of Applied Microbiology University of Applied Sciences and Arts of Southern Switzerland Bellinzona Switzerland

Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

LIEC Université de Lorraine Metz France

MARE Marine and Environmental Sciences Centre Department of Life Sciences University of Coimbra Coimbra Portugal

Mine Water and Environment Research Centre School of Science Edith Cowan University Perth Australia

Missouri University of Science and Technology Rolla Missouri

School of Biological Sciences University of Canterbury Christchurch New Zealand

School of Environmental and Rural Science University of New England Armidale NSW Australia

School of Natural Resources and the Environment University of Arizona Tucson Arizona

School of Science and Technology Nottingham Trent University Nottingham UK

Terra Cypria The Cyprus Conservation Foundation Limassol Cyprus

TropWATER College of Science and Engineering James Cook University Townsville Qld Australia

Université de Lorraine UR AFPA Vandoeuvre Les Nancy France

Water Research Institute National Research Council Italy

Zuckerberg Institute for Water Research The Jacob Blaustein Institutes for Desert Research Ben Gurion University of the Negev Beersheba Israel

Zobrazit více v PubMed

Abril, M. , Muñoz, I. , & Menéndez, M. (2016). Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Science of the Total Environment, 553, 330–339. 10.1016/j.scitotenv.2016.02.082 PubMed DOI

Acuña, V. , Datry, T. , Marshall, J. , Barceló, D. , Dahm, C. N. , Ginebreda, A. , … Palmer, M. A. (2014). Why should we care about temporary waterways? Science, 343, 1080–1081. PubMed

Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439–449. 10.2307/3546886 DOI

Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution and Systematics, 35, 257–284. 10.1146/annurev.ecolsys.35.120202.110122 DOI

Amalfitano, S. , Fazi, S. , Zoppini, A. M. , Caracciolo, A. B. , Grenni, P. , & Puddu, A. (2008). Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers. Microbial Ecology, 55, 270–279. 10.1007/s00248-007-9274-6 PubMed DOI

Arce, M. I. , Sánchez‐Montoya, M. M. , & Gómez, R. (2015). Nitrogen processing following experimental sediment rewetting in isolated pools in an agricultural stream of a semiarid region. Ecological Engineering, 77, 233–241. 10.1016/j.ecoleng.2015.01.035 DOI

Arce, M. , Sánchez‐Montoya, M. M. , Vidal‐Abarca, M. R. , Suárez, M. L. , & Gómez, R. (2014). Implications of flow intermittency on sediment nitrogen availability and processing rates in a Mediterranean headwater stream. Aquatic Science, 76, 173–186. 10.1007/s00027-013-0327-2 DOI

Arnell, N. W. , & Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364. 10.1016/j.jhydrol.2013.02.010 DOI

Austin, A. T. , Yahdjian, L. , Stark, J. M. , Belnap, J. , Porporato, A. , Norton, U. , … Schaeffer, S. M. (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221–235. 10.1007/s00442-004-1519-1 PubMed DOI

Baldwin, D. S. , & Mitchell, A. M. (2000). The effects of drying and re‐flooding on the sediment and soil nutrient dynamics of lowland river‐floodplain systems: A synthesis. Regulated Rivers: Research and Management, 16, 457–467. 10.1002/1099-1646(200009/10)16:5<457:AID-RRR597>3.0.CO;2-B DOI

Bärlocher, F. (2005). Leaching In Graça M. A. S., Bärlocher F., & Gessner M. O. (Eds.), Methods to study litter decomposition: A practical guide (pp. 33–36). The Netherlands: Springer.

Bernal, S. , von Schiller, D. , Sabater, F. , & Martí, E. (2013). Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia, 719, 31–42. 10.1007/s10750-012-1246-2 DOI

Bernhardt, E. S. , Heffernan, J. B. , Grimm, N. B. , Stanley, E. H. , Harvey, J. W. , Arroita, M. , … Yackulic, C. B. (2018). The metabolic regimes of flowing waters. Limnology and Oceanography, 63, 99–118. 10.1002/lno.10726 DOI

Boix‐Fayos, C. , Nadeu, E. , Quiñonero, J. M. , Martínez‐Mena, M. , Almagro, M. , & de Vente, J. (2015). Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment. Hydrology and Earth System Sciences, 19, 1209–1223. 10.5194/hess-19-1209-2015 DOI

Borcard, D. , Legendre, P. , & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055. 10.2307/1940179 DOI

Borken, W. , & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808–824. 10.1111/j.1365-2486.2008.01681.x DOI

Boulton, A. J. , & Boon, P. I. (1991). A review of methodology used to measure leaf litter decomposition in lotic environments – Time to turn over an old leaf. Australian Journal of Marine and Freshwater Research, 42, 1591–43. 10.1071/MF9910001 DOI

Boyero, L. , Graça, M. , Tonin, A. M. , Pérez, J. , Swafford, A. J. , Ferreira, V. , … Pearson, R. G. , (2017). Riparian plant litter quality increases with latitude. Scientific Reports, 7(1), 10562 10.1038/s41598-017-10640-3 PubMed DOI PMC

Bruder, A. , Chauvet, E. , & Gessner, M. O. (2011). Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency. Functional Ecology, 25, 1269–1277. 10.1111/j.1365-2435.2011.01903.x DOI

Bunn, S. E. , Thoms, M. C. , Hamilton, S. K. , & Capon, S. J. (2006). Flow variability in dryland rivers: Boom, bust and the bits in between. River Research and Application, 22, 179–186. 10.1002/rra.904 DOI

Catalan, N. , Obrador, B. , Alomar, C. , & Pretus, J. L. (2013). Seasonality and landscape factors drive dissolved organic matter properties in Mediterranean ephemeral washes. Biogeochemistry, 112, 261–274. 10.1007/s10533-012-9723-2 DOI

Cavanaugh, J. C. , Richardson, W. B. , Strauss, E. A. , & Bartsch, L. A. (2006). Nitrogen dynamics in sediment during water level manipulation on the upper Missisippi River. River Research and Applications, 22, 651–666.

Chiu, M. C. , Leigh, C. , Mazor, R. , Cid, N. , & Resh, V. (2017). Anthropogenic threats to intermittent rivers and ephemeral streams In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams: Ecology and Management (pp. 433–454). London, UK: Academic Press.

Conley, D. J. , Paerl, H. W. , Howarth, R. W. , Boesch, D. F. , Seitzinger, S. P. , Havens, K. E. , … Likens, G. E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015. PubMed

Cornwell, W. K. , Cornelissen, J. H. C. , Amatangelo, K. , Dorrepaal, E. , Eviner, V. T. . … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065–1071. 10.1111/j.1461-0248.2008.01219.x PubMed DOI

Corti, R. , & Datry, T. (2012). Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshwater Science, 31, 1187–1201. 10.1899/12-017.1 DOI

Datry, T. , Bonada, N. , & Boulton, A. J. (2017). General introduction In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams (pp. 1591–20). London, UK: Academic Press.

Datry, T. , Corti, R. , Foulquier, A. , von Schiller, D. , & Tockner, T. (2016). One for all, all for one: A global river research network. EOS: Earth & Space Science News, 97, 13–15.

Datry, T. , Foulquier, A. , Corti, R. , von Schiller, D. , Tockner, K. , Mendoza-Lera, C. , … Zoppini, A. (2018). A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature Geoscience, 11, 497–503. 10.1038/s41561-018-0134-4 DOI

Datry, T. , Larned, S. T. , & Tockner, K. (2014). Intermittent rivers: A challenge for freshwater ecology. BioScience, 64, 229–235. 10.1093/biosci/bit027 DOI

De Girolamo, A. M. , Bouraoui, F. , Buffagni, A. , Pappagallo, G. , & Lo Porto, A. (2017). Hydrology under climate change in a temporary river system: Potential impact on water balance and flow regime. River Research and Applications, 33, 1219–1232.

del Campo, R. , & Gómez, R. (2016). Exposure of wood in floodplains affects its chemical quality and its subsequent breakdown in streams. Science of the Total Environment, 543, 652–661. 10.1016/j.scitotenv.2015.11.050 PubMed DOI

Delgado‐Baquerizo, M. , Maestre, F. T. , Gallardo, A. , Bowker, M. A. , Wallenstein, M. D. , Quero, J. L. , … Zaady, E. (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672–676. 10.1038/nature12670 PubMed DOI

Demi, L. M. , Benstead, J. P. , Rosemond, A. D. , & Maerz, J. C. (2018). Litter P content drives consumer production in detritus based streams spanning an experimental N: P gradient. Ecology, 99, 347–359. 10.1002/ecy.2118 PubMed DOI

Dieter, D. , Frindte, K. , Krüger, A. , & Wurzbacher, C. (2013). Preconditioning of leaves by solar radiation and anoxia affects microbial colonisation and rate of leaf mass loss in an intermittent stream. Freshwater Biology, 58, 1918–1931. 10.1111/fwb.12180 DOI

Dieter, D. , von Schiller, D. , Garcia‐Roger, E. , Sanchez‐Montoya, M. M. , Gomez, R. , Mora‐Gomez, J. , … Tockner, K. (2011). Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquatic Sciences, 73, 599–609. 10.1007/s00027-011-0231-6 DOI

Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252. 10.1080/00401706.1964.10490181 DOI

Elser, J. J. , Bracken, M. E. S. , Cleland, E. E. , Gruner, D. S. , Harpole, W. S. , Hillebrand, H. , … Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142. PubMed

Eriksson, L. , Johansson, E. , Kettaneh‐Wold, N. , & Wold, S. (2006). Multi‐ and megavariate data analysis: Principles and applications. Umea, Sweden: Umetrics AB.

Fellman, J. B. , Hood, E. , & Spencer, R. G. M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography, 55, 2452–2462. 10.4319/lo.2010.55.6.2452 DOI

Fellman, J. B. , Petrone, K. C. , & Grierson, P. F. (2013). Leaf litter age, chemical quality, and photodegradation control the fate of leachate dissolved organic matter in a dryland river. Journal of Arid Environments, 89, 30–37. 10.1016/j.jaridenv.2012.10.011 DOI

Fierer, N. , & Schimel, J. P. (2002). Effects of drying‐rewetting frequency on soil carbon and nitrogen transformations. Soil Biology & Biochemistry, 34, 777–787. 10.1016/S0038-0717(02)00007-X DOI

Gessner, M. O. (1991). Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshwater Biology, 26, 387–398. 10.1111/j.1365-2427.1991.tb01406.x DOI

Gessner, M. O. , & Schwoerbel, J. (1989). Leaching kinetics of fresh leaf‐litter with implications for the current concept of leaf‐processing in streams. Archiv Für Hydrobiologie, 115, 81–90.

Gómez, R. , Arce, M. I. , Sánchez, J. J. , & del Mar Sánchez‐Montoya, M. (2012). The effects of drying on sediment nitrogen content in a Mediterranean intermittent stream: A microcosms study. Hydrobiologia, 679, 43–59. 10.1007/s10750-011-0854-6 DOI

Guenet, B. , Danger, M. , Abbadie, L. , & Lacroix, G. (2010). Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850–2861. 10.1890/09-1968.1 PubMed DOI

Hansen, A. M. , Kraus, T. E. C. , Pellerin, B. A. , Fleck, J. A. , Downing, B. D. , & Bergamaschi, B. A. (2016). Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 61, 1015–1032. 10.1002/lno.10270 DOI

Harris, C. W. , Silvester, E. , Rees, G. N. , Pengelly, J. , & Puskar, L. (2016). Proteins are a major component of dissolved organic nitrogen (DON) leached from terrestrially aged Eucalyptus camaldulensis leaves. Environmental Chemistry, 13, 877–887. 10.1071/EN16005 DOI

Hillel, D. (1980). Fundamentals of soils physics. New York, NY: Academic Press.

Hladyz, S. , Watkins, S. C. , Whitworth, K. L. , & Baldwin, D. S. (2011). Flows and hypoxic blackwater events in managed ephemeral river channels. Journal of Hydrology, 401, 117–125. 10.1016/j.jhydrol.2011.02.014 DOI

Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83–95. 10.1016/j.jhydrol.2005.07.003 DOI

IPCC . (2014). Summary for policymakers In Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E., Kadner S., Seyboth K, … Minx J. C. (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change (pp. 1591–32). Cambridge, UK: Cambridge University Press.

Jacobson, P. J. , & Jacobson, K. M. (2013). Hydrologic controls of physical and ecological processes in Namib Desert ephemeral rivers: Implications for conservation and management. Journal of Arid Environments, 93, 80–93. 10.1016/j.jaridenv.2012.01.010 DOI

Kuiters, A. T. , & Sarink, H. M. (1986). Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology & Biochemistry, 18, 475–480. 10.1016/0038-0717(86)90003-9 DOI

Larned, S. T. , Datry, T. , Arscott, D. B. , & Tockner, K. (2010). Emerging concepts in temporary‐river ecology. Freshwater Biology, 55, 717–738. 10.1111/j.1365-2427.2009.02322.x DOI

Leigh, C. , Boulton, A. J. , Courtwright, J. L. , Fritz, K. , May, C. L. , Walker, R. H. , & Datry, T. (2016). Ecological research and management of intermittent rivers: An historical review and future directions. Freshwater Biology, 61, 1181–1199. 10.1111/fwb.12646 DOI

Marxsen, J. , Zoppini, A. , & Wilczek, S. (2010). Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiology Ecology, 71, 374–386. 10.1111/j.1574-6941.2009.00819.x PubMed DOI

McIntyre, R. , Adams, M. A. , Ford, D. J. , & Grierson, P. F. (2009). Rewetting and litter addition influence mineralization and microbial communities in soils from a semiarid intermittent stream. Soil Biology & Biochemistry, 41, 92–101.

McKnight, D. M. , Boyer, E. W. , Westerhoff, P. K. , Doran, P. T. , Kulbe, T. , & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48. 10.4319/lo.2001.46.1.0038 DOI

McNamara, C. J. , & Leff, L. G. (2004). Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. Journal of the North American Benthological Society, 23, 677–685. 10.1899/0887-3593(2004)023<0677:BCCIBO>2.0.CO;2 DOI

Meisner, A. , Leizeaga, A. , Rousk, J. , & Bååth, E. (2017). Partial drying accelerates bacterial growth recovery to rewetting. Soil Biology & Biochemistry, 112, 269–276. 10.1016/j.soilbio.2017.05.016 DOI

Merbt, S. N. , Proia, L. , Prosser, J. I. , Casamayor, E. O. , & von Schiller, D. (2016). Stream drying drives microbial ammonia oxidation and first flush nitrate export. Ecology, 97, 2192–2198. 10.1002/ecy.1486 PubMed DOI

Milly, P. C. D. , & Dunne, K. A. (2016). Potential evapotranspiration and continental drying. Nature Climate Change, 6, 946–949.

Milly, P. C. D. , Dunne, K. A. , & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347–350. 10.1038/nature04312 PubMed DOI

Nykvist, N. (1963). Leaching and decomposition of water‐soluble organic substances from different types of leaf and needle litter. Studia Forestalia Suecica, 3, 1591–31.

Obermann, M. , Froebrich, J. , Perrin, J.‐L. , & Tournoud, M.‐J. (2007). Impact of significant floods on the annual load in an agricultural catchment in the Mediterranean. Journal of Hydrology, 334, 99–108. 10.1016/j.jhydrol.2006.09.029 DOI

Ocampo, C. J. , Oldham, C. E. , Sivapalan, M. , & Turner, J. V. (2006). Hydrological versus biogeochemical controls on catchment nitrate export: A test of the flushing mechanism. Hydrological Processes, 20, 4269–4286. 10.1002/hyp.6311 DOI

Ohno, T. (2002). Fluorescence inner‐filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36, 742–746. 10.1021/es0155276 PubMed DOI

Ostojić, A. , Rosado, J. , Miliša, M. , Morais, M. , & Tockner, K. (2013). Release of nutrients and organic matter from river floodplain habitats: Simulating seasonal inundation dynamics. Wetlands, 33, 847–859. 10.1007/s13157-013-0442-9 DOI

Parlanti, E. , Worz, K. , Geoffroy, L. , & Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31, 1765–1781. 10.1016/S0146-6380(00)00124-8 DOI

Pekel, J.‐F. , Cottam, A. , Gorelick, N. , & Belward, A. S. (2016). High‐resolution mapping of global surface water and its long‐term changes. Nature, 540, 418–422. 10.1038/nature20584 PubMed DOI

Pérez‐Harguindeguy, N. , Díaz, S. , Cornelissen, J. H. C. , Vendramini, F. , Cabido, M. , & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 218, 21–30.

R Core Team . (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Raymond, P. A. , Hartmann, J. , Lauerwald, R. , Sobek, S. , McDonald, C. , Hoover, M. , … Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. PubMed

Ristok, C. , Leppert, K. N. , Franke, K. , Scherer‐Lorenzen, M. , Niklaus, P. A. , Wessjohann, L. A. , & Bruelheide, H. (2017). Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant and Soil, 419, 305–317. 10.1007/s11104-017-3340-8 DOI

Romani, A. M. , Vazquez, E. , & Butturini, A. (2006). Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: Biogeochemical link across the stream‐riparian interface. Microbial Ecology, 52, 501–512. 10.1007/s00248-006-9112-2 PubMed DOI

Romani, A. M. , Chauvet, E. , Febria, C. , Mora-Gomez, J. , Risse-Buhl, U. , Timoner, X. , & Zeglin, L. (2017). The biota of intermittent rivers and ephemeral streams: Prokaryotes, fungi, and protozoans In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams (pp. 161–188). London, UK: Academic Press.

Rosado, J. , Morais, M. , & Tockner, K. (2015). Mass dispersal of terrestrial organisms during first flush events in a temporary stream. River Research and Application, 31, 912–917.

Sabater, S. , Timoner, X. , Borrego, C. , & Acuña, V. (2016). Stream biofilm responses to flow intermittency: From cells to ecosystems. Frontiers in Environmental Science, 4, 1591–14. 10.3389/fenvs.2016.00014 DOI

Schimel, J. , Balser, T. C. , & Wallenstein, M. (2007). Microbial stress‐response physiology and its implications for ecosystem function. Ecology, 88, 1386–1394. 10.1890/06-0219 PubMed DOI

Skoulikidis, N. , & Amaxidis, Y. (2009). Origin and dynamics of dissolved and particulate nutrients in a minimally disturbed Mediterranean river with intermittent flow. Journal of Hydrology, 373, 218–229. 10.1016/j.jhydrol.2009.04.032 DOI

Skoulikidis, N. , Vardakas, L. , Amaxidis, Y. , & Michalopoulos, P. (2017). Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non‐perennial river reach. Science of the Total Environment, 575, 378–389. PubMed

Skoulikidis, N. T. , Sabater, S. , Datry, T. , Morais, M. M. , Buffagni, A. , Dörflinger, G. , … Tockner, K. (2017). Non‐perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Science of the Total Environment, 577, 1591–18. PubMed

Soria, M. , Leigh, C. , Datry, T. , Bini, L. M. , & Bonada, N. (2017). Biodiversity in perennial and intermittent rivers: A meta‐analysis. Oikos, 126, 1078–1089. 10.1111/oik.04118 DOI

Steward, A. L. , von Schiller, D. , Tockner, K. , Marshall, J. C. , & Bunn, S. E. (2012). When the river runs dry: Human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 10, 202–209. 10.1890/110136 DOI

Taylor, B. R. , & Bärlocher, F. (1996). Variable effects of air‐drying on leaching losses from tree leaf litter. Hydrobiologia, 325, 173–182. 10.1007/BF00014982 DOI

Tonkin, J. D. , Merritt, D. M. , Olden, J. D. , Reynolds, L. V. , & Lytle, D. A. (2018). Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution, 2, 86–93. PubMed

Tzoraki, O. , Nikolaidis, N. P. , Amaxidis, Y. , & Skoulikidis, N. T. (2007). Instream biogeochemical processes of a temporary river. Environmental Science and Technology, 41, 1225–1231. 10.1021/es062193h PubMed DOI

von Schiller, D. , Bernal, S. , Dahm, C. N. , & Martí, E. (2017). Nutrient and organic matter dynamics in intermittent rivers In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams (pp. 135–160). London, UK: Academic Press.

von Schiller, D. , Acuña, V. , Graeber, D. , Martí, E. , Ribot, M. , Sabater, S. , … Tockner, K. (2011). Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 73, 485–497. 10.1007/s00027-011-0195-6 DOI

von Schiller, D. , Graeber, D. , Ribot, M. , Timoner, X. , Acuña, V. , Marti, E. , … Tockner, K. (2015). Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry, 123, 429–446. 10.1007/s10533-015-0077-4 DOI

Weishaar, J. L. , Aiken, G. R. , Bergamaschi, B. A. , Fram, M. S. , Fujii, R. , & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition of dissolved organic matter. Environmental Science and Technology, 37, 4702–4708. PubMed

Whitworth, K. L. , Baldwin, D. S. , & Kerr, J. L. (2012). Drought, floods and water quality: Drivers of a severe hypoxic blackwater event in a major river system (the southern Murray‐Darling Basin, Australia). Journal of Hydrology, 450–451, 190–198. 10.1016/j.jhydrol.2012.04.057 DOI

Wilson, H. F. , & Xenopoulos, M. A. (2008). Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems, 11, 555–568. 10.1007/s10021-008-9142-3 DOI

Wold, S. , Sjöström, M. , & Eriksson, L. (2001). PLS‐regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. 10.1016/S0169-7439(01)00155-1 DOI

XLSTAT . (2017). Data analysis and statistical solution for microsoft excel. Paris, France: Addinsoft.

Zsolnay, A. , Baigar, E. , Jimenez, M. , Steinweg, B. , & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45–50. 10.1016/S0045-6535(98)00166-0 PubMed DOI

Zuur, A. F. , Ieno, E. N. , & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. 10.1111/j.2041-210X.2009.00001.x DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unravelling large-scale patterns and drivers of biodiversity in dry rivers

. 2024 Aug 22 ; 15 (1) : 7233. [epub] 20240822

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...