Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
748625
Marie Curie - United Kingdom
PP00P3_179089
Swiss National Science Foundation - Switzerland
PP00P3_150698
Swiss National Science Foundation - Switzerland
PubMed
30628191
PubMed Central
PMC6850495
DOI
10.1111/gcb.14537
Knihovny.cz E-zdroje
- Klíčová slova
- biofilms, leaching, leaf litter, rewetting, sediments, temporary rivers,
- MeSH
- biofilmy růst a vývoj MeSH
- biologická dostupnost MeSH
- dusičnany analýza MeSH
- geologické sedimenty chemie MeSH
- klimatické změny MeSH
- listy rostlin chemie MeSH
- organické látky analýza MeSH
- podnebí MeSH
- řeky chemie MeSH
- živiny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusičnany MeSH
- organické látky MeSH
Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
Australian Rivers Institute Griffith University Nathan Qld Australia
Austrian Science Fund Vienna Austria
BC3 Basque Centre for Climate Change Leioa Spain
Center for Applied Geosciences Eberhard Karls Universität Tübingen Tübingen Germany
Centre for Freshwater Ecosystems La Trobe University Wodonga Vic Australia
Centre of Edaphology and Applied Biology of Segura Murcia Spain
Centro de Ciências Agrárias e Biológicas Universidade Estadual Vale do Acaraú Sobral Brazil
Departamento de Ecología y Biología Animal Universidad de Vigo Vigo Spain
Department of Biology and Ecology Faculty of Sciences and Mathematics University of Niš Niš Serbia
Department of Biology Faculty of Science University of Zagreb Zagreb Croatia
Department of Biology University of Montenegro Podgorica Montenegro
Department of Biology University of Oklahoma Norman Oklahoma
Department of Biology University of San Diego San Diego California
Department of Bioscience Aarhus University Silkeborg Denmark
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Civil Environmental and Mechanical Engineering Trento University Trento Italy
Department of Ecology and Environmental Science Umeå University Umeå Sweden
Department of Ecology Berlin Institute of Technology Berlin Germany
Department of Environment and Science Queensland Government Brisbane Qld Australia
Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
Department of Freshwater Conservation BTU Cottbus Senftenberg Bad Saarow Germany
Department of Geography University of California Berkeley California
Department of Geosciences Federal University of São João del Rei São João del Rei Brazil
Department of Limnology Institute for Evolution and Biodiversity University of Münster Germany
Department of Zoology University of Granada Granada Spain
Department of Zoology University of Otago Dunedin New Zealand
Ezemvelo KZN Wildlife Pietermaritzburg South Africa
Faculty of Environmental Science and EULA Chile Center Universidad de Concepción Concepción Chile
Great Lakes Institute for Environmental Research University of Windsor Windsor Canada
Grup de Recerca Freshwater Ecology Hydrology and Management Universitat de Barcelona Barcelona Spain
INRA UAR 1275 DEPT EFPA Centre de recherche de Nancy Champenoux France
Institute for Applied Ecology University of Canberra Bruce Canberra ACT Australia
Institute of Biology Freie Universität Berlin Berlin Germany
Institute of Landscape Ecology and Site Evaluation University of Rostock Rostock Germany
Instituto de Biología Universidad de Antioquia Medellín Colombia
IRSTEA UR RIVERLY Centre de Lyon Villeurbanne Villeurbanne Cedex France
Laboratoire d'Écologie Alpine UMR CNRS UGA USMB 5553 Université Grenoble Alpes Grenoble France
Laboratoire d'Écologie et Gestion des Ecosystèmes Naturels University of Tlemcen Tlemcen Algeria
Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
LIEC Université de Lorraine Metz France
Mine Water and Environment Research Centre School of Science Edith Cowan University Perth Australia
Missouri University of Science and Technology Rolla Missouri
School of Biological Sciences University of Canterbury Christchurch New Zealand
School of Environmental and Rural Science University of New England Armidale NSW Australia
School of Natural Resources and the Environment University of Arizona Tucson Arizona
School of Science and Technology Nottingham Trent University Nottingham UK
Terra Cypria The Cyprus Conservation Foundation Limassol Cyprus
TropWATER College of Science and Engineering James Cook University Townsville Qld Australia
Université de Lorraine UR AFPA Vandoeuvre Les Nancy France
Zobrazit více v PubMed
Abril, M. , Muñoz, I. , & Menéndez, M. (2016). Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Science of the Total Environment, 553, 330–339. 10.1016/j.scitotenv.2016.02.082 PubMed DOI
Acuña, V. , Datry, T. , Marshall, J. , Barceló, D. , Dahm, C. N. , Ginebreda, A. , … Palmer, M. A. (2014). Why should we care about temporary waterways? Science, 343, 1080–1081. PubMed
Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439–449. 10.2307/3546886 DOI
Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution and Systematics, 35, 257–284. 10.1146/annurev.ecolsys.35.120202.110122 DOI
Amalfitano, S. , Fazi, S. , Zoppini, A. M. , Caracciolo, A. B. , Grenni, P. , & Puddu, A. (2008). Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers. Microbial Ecology, 55, 270–279. 10.1007/s00248-007-9274-6 PubMed DOI
Arce, M. I. , Sánchez‐Montoya, M. M. , & Gómez, R. (2015). Nitrogen processing following experimental sediment rewetting in isolated pools in an agricultural stream of a semiarid region. Ecological Engineering, 77, 233–241. 10.1016/j.ecoleng.2015.01.035 DOI
Arce, M. , Sánchez‐Montoya, M. M. , Vidal‐Abarca, M. R. , Suárez, M. L. , & Gómez, R. (2014). Implications of flow intermittency on sediment nitrogen availability and processing rates in a Mediterranean headwater stream. Aquatic Science, 76, 173–186. 10.1007/s00027-013-0327-2 DOI
Arnell, N. W. , & Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364. 10.1016/j.jhydrol.2013.02.010 DOI
Austin, A. T. , Yahdjian, L. , Stark, J. M. , Belnap, J. , Porporato, A. , Norton, U. , … Schaeffer, S. M. (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221–235. 10.1007/s00442-004-1519-1 PubMed DOI
Baldwin, D. S. , & Mitchell, A. M. (2000). The effects of drying and re‐flooding on the sediment and soil nutrient dynamics of lowland river‐floodplain systems: A synthesis. Regulated Rivers: Research and Management, 16, 457–467. 10.1002/1099-1646(200009/10)16:5<457:AID-RRR597>3.0.CO;2-B DOI
Bärlocher, F. (2005). Leaching In Graça M. A. S., Bärlocher F., & Gessner M. O. (Eds.), Methods to study litter decomposition: A practical guide (pp. 33–36). The Netherlands: Springer.
Bernal, S. , von Schiller, D. , Sabater, F. , & Martí, E. (2013). Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia, 719, 31–42. 10.1007/s10750-012-1246-2 DOI
Bernhardt, E. S. , Heffernan, J. B. , Grimm, N. B. , Stanley, E. H. , Harvey, J. W. , Arroita, M. , … Yackulic, C. B. (2018). The metabolic regimes of flowing waters. Limnology and Oceanography, 63, 99–118. 10.1002/lno.10726 DOI
Boix‐Fayos, C. , Nadeu, E. , Quiñonero, J. M. , Martínez‐Mena, M. , Almagro, M. , & de Vente, J. (2015). Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment. Hydrology and Earth System Sciences, 19, 1209–1223. 10.5194/hess-19-1209-2015 DOI
Borcard, D. , Legendre, P. , & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055. 10.2307/1940179 DOI
Borken, W. , & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808–824. 10.1111/j.1365-2486.2008.01681.x DOI
Boulton, A. J. , & Boon, P. I. (1991). A review of methodology used to measure leaf litter decomposition in lotic environments – Time to turn over an old leaf. Australian Journal of Marine and Freshwater Research, 42, 1591–43. 10.1071/MF9910001 DOI
Boyero, L. , Graça, M. , Tonin, A. M. , Pérez, J. , Swafford, A. J. , Ferreira, V. , … Pearson, R. G. , (2017). Riparian plant litter quality increases with latitude. Scientific Reports, 7(1), 10562 10.1038/s41598-017-10640-3 PubMed DOI PMC
Bruder, A. , Chauvet, E. , & Gessner, M. O. (2011). Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency. Functional Ecology, 25, 1269–1277. 10.1111/j.1365-2435.2011.01903.x DOI
Bunn, S. E. , Thoms, M. C. , Hamilton, S. K. , & Capon, S. J. (2006). Flow variability in dryland rivers: Boom, bust and the bits in between. River Research and Application, 22, 179–186. 10.1002/rra.904 DOI
Catalan, N. , Obrador, B. , Alomar, C. , & Pretus, J. L. (2013). Seasonality and landscape factors drive dissolved organic matter properties in Mediterranean ephemeral washes. Biogeochemistry, 112, 261–274. 10.1007/s10533-012-9723-2 DOI
Cavanaugh, J. C. , Richardson, W. B. , Strauss, E. A. , & Bartsch, L. A. (2006). Nitrogen dynamics in sediment during water level manipulation on the upper Missisippi River. River Research and Applications, 22, 651–666.
Chiu, M. C. , Leigh, C. , Mazor, R. , Cid, N. , & Resh, V. (2017). Anthropogenic threats to intermittent rivers and ephemeral streams In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams: Ecology and Management (pp. 433–454). London, UK: Academic Press.
Conley, D. J. , Paerl, H. W. , Howarth, R. W. , Boesch, D. F. , Seitzinger, S. P. , Havens, K. E. , … Likens, G. E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015. PubMed
Cornwell, W. K. , Cornelissen, J. H. C. , Amatangelo, K. , Dorrepaal, E. , Eviner, V. T. . … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065–1071. 10.1111/j.1461-0248.2008.01219.x PubMed DOI
Corti, R. , & Datry, T. (2012). Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshwater Science, 31, 1187–1201. 10.1899/12-017.1 DOI
Datry, T. , Bonada, N. , & Boulton, A. J. (2017). General introduction In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams (pp. 1591–20). London, UK: Academic Press.
Datry, T. , Corti, R. , Foulquier, A. , von Schiller, D. , & Tockner, T. (2016). One for all, all for one: A global river research network. EOS: Earth & Space Science News, 97, 13–15.
Datry, T. , Foulquier, A. , Corti, R. , von Schiller, D. , Tockner, K. , Mendoza-Lera, C. , … Zoppini, A. (2018). A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature Geoscience, 11, 497–503. 10.1038/s41561-018-0134-4 DOI
Datry, T. , Larned, S. T. , & Tockner, K. (2014). Intermittent rivers: A challenge for freshwater ecology. BioScience, 64, 229–235. 10.1093/biosci/bit027 DOI
De Girolamo, A. M. , Bouraoui, F. , Buffagni, A. , Pappagallo, G. , & Lo Porto, A. (2017). Hydrology under climate change in a temporary river system: Potential impact on water balance and flow regime. River Research and Applications, 33, 1219–1232.
del Campo, R. , & Gómez, R. (2016). Exposure of wood in floodplains affects its chemical quality and its subsequent breakdown in streams. Science of the Total Environment, 543, 652–661. 10.1016/j.scitotenv.2015.11.050 PubMed DOI
Delgado‐Baquerizo, M. , Maestre, F. T. , Gallardo, A. , Bowker, M. A. , Wallenstein, M. D. , Quero, J. L. , … Zaady, E. (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672–676. 10.1038/nature12670 PubMed DOI
Demi, L. M. , Benstead, J. P. , Rosemond, A. D. , & Maerz, J. C. (2018). Litter P content drives consumer production in detritus based streams spanning an experimental N: P gradient. Ecology, 99, 347–359. 10.1002/ecy.2118 PubMed DOI
Dieter, D. , Frindte, K. , Krüger, A. , & Wurzbacher, C. (2013). Preconditioning of leaves by solar radiation and anoxia affects microbial colonisation and rate of leaf mass loss in an intermittent stream. Freshwater Biology, 58, 1918–1931. 10.1111/fwb.12180 DOI
Dieter, D. , von Schiller, D. , Garcia‐Roger, E. , Sanchez‐Montoya, M. M. , Gomez, R. , Mora‐Gomez, J. , … Tockner, K. (2011). Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquatic Sciences, 73, 599–609. 10.1007/s00027-011-0231-6 DOI
Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252. 10.1080/00401706.1964.10490181 DOI
Elser, J. J. , Bracken, M. E. S. , Cleland, E. E. , Gruner, D. S. , Harpole, W. S. , Hillebrand, H. , … Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142. PubMed
Eriksson, L. , Johansson, E. , Kettaneh‐Wold, N. , & Wold, S. (2006). Multi‐ and megavariate data analysis: Principles and applications. Umea, Sweden: Umetrics AB.
Fellman, J. B. , Hood, E. , & Spencer, R. G. M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography, 55, 2452–2462. 10.4319/lo.2010.55.6.2452 DOI
Fellman, J. B. , Petrone, K. C. , & Grierson, P. F. (2013). Leaf litter age, chemical quality, and photodegradation control the fate of leachate dissolved organic matter in a dryland river. Journal of Arid Environments, 89, 30–37. 10.1016/j.jaridenv.2012.10.011 DOI
Fierer, N. , & Schimel, J. P. (2002). Effects of drying‐rewetting frequency on soil carbon and nitrogen transformations. Soil Biology & Biochemistry, 34, 777–787. 10.1016/S0038-0717(02)00007-X DOI
Gessner, M. O. (1991). Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshwater Biology, 26, 387–398. 10.1111/j.1365-2427.1991.tb01406.x DOI
Gessner, M. O. , & Schwoerbel, J. (1989). Leaching kinetics of fresh leaf‐litter with implications for the current concept of leaf‐processing in streams. Archiv Für Hydrobiologie, 115, 81–90.
Gómez, R. , Arce, M. I. , Sánchez, J. J. , & del Mar Sánchez‐Montoya, M. (2012). The effects of drying on sediment nitrogen content in a Mediterranean intermittent stream: A microcosms study. Hydrobiologia, 679, 43–59. 10.1007/s10750-011-0854-6 DOI
Guenet, B. , Danger, M. , Abbadie, L. , & Lacroix, G. (2010). Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850–2861. 10.1890/09-1968.1 PubMed DOI
Hansen, A. M. , Kraus, T. E. C. , Pellerin, B. A. , Fleck, J. A. , Downing, B. D. , & Bergamaschi, B. A. (2016). Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 61, 1015–1032. 10.1002/lno.10270 DOI
Harris, C. W. , Silvester, E. , Rees, G. N. , Pengelly, J. , & Puskar, L. (2016). Proteins are a major component of dissolved organic nitrogen (DON) leached from terrestrially aged Eucalyptus camaldulensis leaves. Environmental Chemistry, 13, 877–887. 10.1071/EN16005 DOI
Hillel, D. (1980). Fundamentals of soils physics. New York, NY: Academic Press.
Hladyz, S. , Watkins, S. C. , Whitworth, K. L. , & Baldwin, D. S. (2011). Flows and hypoxic blackwater events in managed ephemeral river channels. Journal of Hydrology, 401, 117–125. 10.1016/j.jhydrol.2011.02.014 DOI
Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83–95. 10.1016/j.jhydrol.2005.07.003 DOI
IPCC . (2014). Summary for policymakers In Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E., Kadner S., Seyboth K, … Minx J. C. (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change (pp. 1591–32). Cambridge, UK: Cambridge University Press.
Jacobson, P. J. , & Jacobson, K. M. (2013). Hydrologic controls of physical and ecological processes in Namib Desert ephemeral rivers: Implications for conservation and management. Journal of Arid Environments, 93, 80–93. 10.1016/j.jaridenv.2012.01.010 DOI
Kuiters, A. T. , & Sarink, H. M. (1986). Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology & Biochemistry, 18, 475–480. 10.1016/0038-0717(86)90003-9 DOI
Larned, S. T. , Datry, T. , Arscott, D. B. , & Tockner, K. (2010). Emerging concepts in temporary‐river ecology. Freshwater Biology, 55, 717–738. 10.1111/j.1365-2427.2009.02322.x DOI
Leigh, C. , Boulton, A. J. , Courtwright, J. L. , Fritz, K. , May, C. L. , Walker, R. H. , & Datry, T. (2016). Ecological research and management of intermittent rivers: An historical review and future directions. Freshwater Biology, 61, 1181–1199. 10.1111/fwb.12646 DOI
Marxsen, J. , Zoppini, A. , & Wilczek, S. (2010). Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiology Ecology, 71, 374–386. 10.1111/j.1574-6941.2009.00819.x PubMed DOI
McIntyre, R. , Adams, M. A. , Ford, D. J. , & Grierson, P. F. (2009). Rewetting and litter addition influence mineralization and microbial communities in soils from a semiarid intermittent stream. Soil Biology & Biochemistry, 41, 92–101.
McKnight, D. M. , Boyer, E. W. , Westerhoff, P. K. , Doran, P. T. , Kulbe, T. , & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48. 10.4319/lo.2001.46.1.0038 DOI
McNamara, C. J. , & Leff, L. G. (2004). Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. Journal of the North American Benthological Society, 23, 677–685. 10.1899/0887-3593(2004)023<0677:BCCIBO>2.0.CO;2 DOI
Meisner, A. , Leizeaga, A. , Rousk, J. , & Bååth, E. (2017). Partial drying accelerates bacterial growth recovery to rewetting. Soil Biology & Biochemistry, 112, 269–276. 10.1016/j.soilbio.2017.05.016 DOI
Merbt, S. N. , Proia, L. , Prosser, J. I. , Casamayor, E. O. , & von Schiller, D. (2016). Stream drying drives microbial ammonia oxidation and first flush nitrate export. Ecology, 97, 2192–2198. 10.1002/ecy.1486 PubMed DOI
Milly, P. C. D. , & Dunne, K. A. (2016). Potential evapotranspiration and continental drying. Nature Climate Change, 6, 946–949.
Milly, P. C. D. , Dunne, K. A. , & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347–350. 10.1038/nature04312 PubMed DOI
Nykvist, N. (1963). Leaching and decomposition of water‐soluble organic substances from different types of leaf and needle litter. Studia Forestalia Suecica, 3, 1591–31.
Obermann, M. , Froebrich, J. , Perrin, J.‐L. , & Tournoud, M.‐J. (2007). Impact of significant floods on the annual load in an agricultural catchment in the Mediterranean. Journal of Hydrology, 334, 99–108. 10.1016/j.jhydrol.2006.09.029 DOI
Ocampo, C. J. , Oldham, C. E. , Sivapalan, M. , & Turner, J. V. (2006). Hydrological versus biogeochemical controls on catchment nitrate export: A test of the flushing mechanism. Hydrological Processes, 20, 4269–4286. 10.1002/hyp.6311 DOI
Ohno, T. (2002). Fluorescence inner‐filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36, 742–746. 10.1021/es0155276 PubMed DOI
Ostojić, A. , Rosado, J. , Miliša, M. , Morais, M. , & Tockner, K. (2013). Release of nutrients and organic matter from river floodplain habitats: Simulating seasonal inundation dynamics. Wetlands, 33, 847–859. 10.1007/s13157-013-0442-9 DOI
Parlanti, E. , Worz, K. , Geoffroy, L. , & Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31, 1765–1781. 10.1016/S0146-6380(00)00124-8 DOI
Pekel, J.‐F. , Cottam, A. , Gorelick, N. , & Belward, A. S. (2016). High‐resolution mapping of global surface water and its long‐term changes. Nature, 540, 418–422. 10.1038/nature20584 PubMed DOI
Pérez‐Harguindeguy, N. , Díaz, S. , Cornelissen, J. H. C. , Vendramini, F. , Cabido, M. , & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 218, 21–30.
R Core Team . (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Raymond, P. A. , Hartmann, J. , Lauerwald, R. , Sobek, S. , McDonald, C. , Hoover, M. , … Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. PubMed
Ristok, C. , Leppert, K. N. , Franke, K. , Scherer‐Lorenzen, M. , Niklaus, P. A. , Wessjohann, L. A. , & Bruelheide, H. (2017). Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant and Soil, 419, 305–317. 10.1007/s11104-017-3340-8 DOI
Romani, A. M. , Vazquez, E. , & Butturini, A. (2006). Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: Biogeochemical link across the stream‐riparian interface. Microbial Ecology, 52, 501–512. 10.1007/s00248-006-9112-2 PubMed DOI
Romani, A. M. , Chauvet, E. , Febria, C. , Mora-Gomez, J. , Risse-Buhl, U. , Timoner, X. , & Zeglin, L. (2017). The biota of intermittent rivers and ephemeral streams: Prokaryotes, fungi, and protozoans In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams (pp. 161–188). London, UK: Academic Press.
Rosado, J. , Morais, M. , & Tockner, K. (2015). Mass dispersal of terrestrial organisms during first flush events in a temporary stream. River Research and Application, 31, 912–917.
Sabater, S. , Timoner, X. , Borrego, C. , & Acuña, V. (2016). Stream biofilm responses to flow intermittency: From cells to ecosystems. Frontiers in Environmental Science, 4, 1591–14. 10.3389/fenvs.2016.00014 DOI
Schimel, J. , Balser, T. C. , & Wallenstein, M. (2007). Microbial stress‐response physiology and its implications for ecosystem function. Ecology, 88, 1386–1394. 10.1890/06-0219 PubMed DOI
Skoulikidis, N. , & Amaxidis, Y. (2009). Origin and dynamics of dissolved and particulate nutrients in a minimally disturbed Mediterranean river with intermittent flow. Journal of Hydrology, 373, 218–229. 10.1016/j.jhydrol.2009.04.032 DOI
Skoulikidis, N. , Vardakas, L. , Amaxidis, Y. , & Michalopoulos, P. (2017). Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non‐perennial river reach. Science of the Total Environment, 575, 378–389. PubMed
Skoulikidis, N. T. , Sabater, S. , Datry, T. , Morais, M. M. , Buffagni, A. , Dörflinger, G. , … Tockner, K. (2017). Non‐perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Science of the Total Environment, 577, 1591–18. PubMed
Soria, M. , Leigh, C. , Datry, T. , Bini, L. M. , & Bonada, N. (2017). Biodiversity in perennial and intermittent rivers: A meta‐analysis. Oikos, 126, 1078–1089. 10.1111/oik.04118 DOI
Steward, A. L. , von Schiller, D. , Tockner, K. , Marshall, J. C. , & Bunn, S. E. (2012). When the river runs dry: Human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 10, 202–209. 10.1890/110136 DOI
Taylor, B. R. , & Bärlocher, F. (1996). Variable effects of air‐drying on leaching losses from tree leaf litter. Hydrobiologia, 325, 173–182. 10.1007/BF00014982 DOI
Tonkin, J. D. , Merritt, D. M. , Olden, J. D. , Reynolds, L. V. , & Lytle, D. A. (2018). Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution, 2, 86–93. PubMed
Tzoraki, O. , Nikolaidis, N. P. , Amaxidis, Y. , & Skoulikidis, N. T. (2007). Instream biogeochemical processes of a temporary river. Environmental Science and Technology, 41, 1225–1231. 10.1021/es062193h PubMed DOI
von Schiller, D. , Bernal, S. , Dahm, C. N. , & Martí, E. (2017). Nutrient and organic matter dynamics in intermittent rivers In Datry T., Bonada N., & Boulton A. (Eds.), Intermittent rivers and ephemeral streams (pp. 135–160). London, UK: Academic Press.
von Schiller, D. , Acuña, V. , Graeber, D. , Martí, E. , Ribot, M. , Sabater, S. , … Tockner, K. (2011). Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 73, 485–497. 10.1007/s00027-011-0195-6 DOI
von Schiller, D. , Graeber, D. , Ribot, M. , Timoner, X. , Acuña, V. , Marti, E. , … Tockner, K. (2015). Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry, 123, 429–446. 10.1007/s10533-015-0077-4 DOI
Weishaar, J. L. , Aiken, G. R. , Bergamaschi, B. A. , Fram, M. S. , Fujii, R. , & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition of dissolved organic matter. Environmental Science and Technology, 37, 4702–4708. PubMed
Whitworth, K. L. , Baldwin, D. S. , & Kerr, J. L. (2012). Drought, floods and water quality: Drivers of a severe hypoxic blackwater event in a major river system (the southern Murray‐Darling Basin, Australia). Journal of Hydrology, 450–451, 190–198. 10.1016/j.jhydrol.2012.04.057 DOI
Wilson, H. F. , & Xenopoulos, M. A. (2008). Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems, 11, 555–568. 10.1007/s10021-008-9142-3 DOI
Wold, S. , Sjöström, M. , & Eriksson, L. (2001). PLS‐regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. 10.1016/S0169-7439(01)00155-1 DOI
XLSTAT . (2017). Data analysis and statistical solution for microsoft excel. Paris, France: Addinsoft.
Zsolnay, A. , Baigar, E. , Jimenez, M. , Steinweg, B. , & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45–50. 10.1016/S0045-6535(98)00166-0 PubMed DOI
Zuur, A. F. , Ieno, E. N. , & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. 10.1111/j.2041-210X.2009.00001.x DOI