Unravelling large-scale patterns and drivers of biodiversity in dry rivers

. 2024 Aug 22 ; 15 (1) : 7233. [epub] 20240822

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39174521

Grantová podpora
869226 (DRYvER) EC | EU Framework Programme for Research and Innovation H2020 | H2020 European Institute of Innovation and Technology (H2020 The European Institute of Innovation and Technology)

Odkazy

PubMed 39174521
PubMed Central PMC11341732
DOI 10.1038/s41467-024-50873-1
PII: 10.1038/s41467-024-50873-1
Knihovny.cz E-zdroje

More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds. We focus on eight major taxa, including microorganisms, invertebrates and plants: Algae, Archaea, Bacteria, Fungi, Protozoa, Arthropods, Nematodes and Streptophyta. We use environmental DNA metabarcoding to assess biodiversity in dry sediments collected over a 1-year period from 84 non-perennial rivers across 19 countries on four continents. Both direct factors, such as nutrient and carbon availability, and indirect factors such as climate influence the local biodiversity of most taxa. Limited resource availability and prolonged dry phases favor oligotrophic microbial taxa. Co-variation among taxa, particularly Bacteria, Fungi, Algae and Protozoa, explain more spatial variation in community composition than dispersal or environmental gradients. This finding suggests that biotic interactions or unmeasured ecological and evolutionary factors may strongly influence communities during dry phases, altering biodiversity responses to global changes.

Asociación Meles Plaza de las Américas 13 2B Alhama de Murcia Spain

Australian Rivers Institute Griffith University Nathan QLD Australia

Balearic Biodiversity Centre Department of Biology University of the Balearic Islands Palma Spain

Berlin Institute of Technology Berlin Germany

Biosciences and Food Technology Discipline School of Science RMIT University Bundoora VIC Australia

California Department of Fish and Wildlife Ontario CA USA

Centre for Freshwater Ecosystems School of Agriculture Biomedicine and Environment La Trobe University Wodonga VIC Australia

Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal

Centre for Research on Ecology and Forestry Applications Barcelona Spain

Centre for Tropical Water and Aquatic Ecosystem Research James Cook University Bebegu Yumba Campus Townsville QLD Australia

Complutense University of Madrid Department of Biodiversity Ecology and Evolution Faculty of Biology Madrid Spain

Department of Biosciences Mangalore University Mangalagangotri Mangalore Karnataka India

Department of Ecology and Animal Biology University of Vigo Vigo Spain

Department of Ecoscience Aarhus University Aarhus C Denmark

Department of Evolutionary and Integrative Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland

Department of Evolutionary Biology Ecology and Environmental Sciences Faculty of Biology University of Barcelona Barcelona Spain

Department of Freshwater Invertebrates Albany Museum Makhanda Makhanda South Africa

Department of Geography University of the Balearic Islands Palma Spain

Department of Geosciences Campus Tancredo Neves Federal University of São João del Rei São João del Rei Brazil

Department of Life Sciences and Systems Biology University of Turin Torino Italy

Department of Plankton and Microbial Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries Zur alten Fischerhütte 2 Stechlin Germany

Division of Zoology Faculty of Science University of Zagreb Zagreb Croatia

Ezemvelo KZN Wildlife Pietermaritzburg South Africa

Facultad de Ingeniería Arquitectura y Diseño Universidad San Sebastián Concepción Chile

Faculty of Marine Sciences Ruppin Academic Center Michmoret Israel

FEHM Lab Avda Diagonal 643 Barcelona Spain

Goethe Universität Frankfurt Department of BioSciences Frankfurt aM Germany

Great Lakes Institute for Environmental Research and Department of Integrative Biology University of Windsor Windsor ON Canada

iES RPTU University of Kaiserslautern Landau Forstrstr 7 Landau Germany

INIBIOMA CONICET Quintral 1250 Bariloche Argentina

INRAE UR RiverLY Centre de Lyon Villeurbanne Villeurbanne Cedex France

Instituto Experimental de Biología Universidad San Francisco Xavier Calle Dalence N° 235 Sucre Bolivia

IRTA Marine and Continental Waters Programme La Ràpita Catalonia Spain

Israel Nature and Parks Authority Jerusalem Israel

Julius Kühn Institute Institute for Ecological Chemistry Plant Analysis and Stored Product Protection Königin Luise Straße 19 Berlin Germany

Masaryk University Faculty of Science Department of Botany and Zoology Brno Czech Republic

Mine Water and Environment Research Centre Edith Cowan University Joondalup WA Australia

Missouri University of Science and Technology Rolla MO USA

NIVA Norwegian Institute for Water Research Oslo Norway

Open University of Cyprus PO Box 12794 Latsia Nicosia Cyprus

Queen Mary University of London London UK

Queensland Government Department of Environment Science and Innovation Brisbane QLD Australia

Real Estate and Workplace Services Sustainability Team Google Mountain View CA USA

School of Environmental and Rural Science University of New England Armidale NSW Australia

School of Natural Resources and the Environment University of Arizona Tucson AZ USA

School of Science and Technology Nottingham Trent University Nottingham UK

Senckenberg Biodiversity and Climate Research Centre Senckenberganlage 25 Frankfurt am Main Germany

Senckenberg Gesellschaft für Naturforschung Frankfurt aM Germany

Simon Fraser University Burnaby BC Canada

SUPSI Institute of Microbiology Mendrisio Switzerland

Swiss Federal Institute for Aquatic Science and Technology Dübendorf Switzerland

The Pennsylvania State University Department of Ecosystem Science and Management University Park USA

The School of Agriculture Food and Ecosystem Sciences The University of Melbourne Burnley Campus Victoria Australia

Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA Grenoble France

Universidad de Concepción Facultad de Ciencias Ambientales Centro EULA Barrio Universitario Centro EULA Concepción Chile

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Biología Departamento de Ecología y Recursos Naturales Boulevard Suyapa Tegucigalpa Honduras

Universidad Nacional Autónoma de Honduras Tecnológico Danli Laboratory of Biology Department of Sciences Carretera Panamericana frente Hospital Regional El Paraíso Danlí Honduras

Universidade Estadual Vale do Acaraú Centro de Ciências Agrárias e Biológicas Campus Betânia Brazil

Université de Corse UAR 3514 CNRS Stella Mare Biguglia France

Université de Lorraine INRAE URAFPA Nancy France

Université de Lorraine LIEC UMR CNRS 7360 Metz France

University of California Berkeley Berkeley CA USA

University of Canberra Centre for Applied Water Science Canberra ACT Australia

University of Canterbury School of Biological Sciences Christchurch New Zealand

University of Innsbruck Department of Ecology Innsbruck Austria

University of Münster Institute for Evolution and Biodiversity Münster Germany

University of Murcia Department of Ecology and Hydrology Murcia Spain

University of Niš Faculty of Science and Mathematics Department of Biology and Ecology Niš Serbia

University of San Diego Department of Biology San Diego CA USA

University of the Basque Country Department of Plant Biology and Ecology Bilbao Spain

University of Tlemcen Tlemcen Algeria

University of Wisconsin La Crosse Biology Department La Crosse WI USA

Water Laboratory University of Évora P 1 T E Rua da Barba Rala No 1 7005 345 Évora Portugal

Water Research Institute National Research Council Area della Ricerca RM1 via Salaria km 29 300 Monterotondo Rome Italy

Zuckerberg Institute for Water Research The J Blaustein Institutes for Desert Research Ben Gurion University of the Negev Negev Israel

Zobrazit více v PubMed

He, F. et al. The global decline of freshwater megafauna. Glob. Chang. Biol.25, 3883–3892 (2019). 10.1111/gcb.14753 PubMed DOI

Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev.94, 849–873 (2019). 10.1111/brv.12480 PubMed DOI

Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev.81, 163–182 (2006). 10.1017/S1464793105006950 PubMed DOI

Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv.232, 8–27 (2019).10.1016/j.biocon.2019.01.020 DOI

Crabot, J. et al. A global perspective on the functional responses of stream communities to flow intermittence. Ecography44, 1511–1523 (2021). 10.1111/ecog.05697 PubMed DOI PMC

Soria, M., Leigh, C., Datry, T., Bini, L. M. & Bonada, N. Biodiversity in perennial and intermittent rivers: a meta-analysis. Oikos126, 1078–1089 (2017).10.1111/oik.04118 DOI

Datry, T. et al. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol.55, 353–364 (2018). 10.1111/1365-2664.12941 PubMed DOI PMC

Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature594, 391–397 (2021). 10.1038/s41586-021-03565-5 PubMed DOI

Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci USA111, 13894–13899 (2014). 10.1073/pnas.1320890111 PubMed DOI PMC

Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience64, 229–235 (2014).10.1093/biosci/bit027 DOI

Datry, T. et al. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography37, 94–104 (2014).10.1111/j.1600-0587.2013.00287.x DOI

Steward, A. L., Datry, T. & Langhans, S. D. The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams. Biol. Rev.97, 1408–1425 (2022). 10.1111/brv.12848 PubMed DOI PMC

Sánchez-Montoya, M. M. et al. Intermittent rivers and ephemeral streams are pivotal corridors for aquatic and terrestrial animals. BioScience73, 291–301 (2023).10.1093/biosci/biad004 DOI

B-Béres, V. et al. Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Adv. Water Resour.126, 129–136 (2019).10.1016/j.advwatres.2019.02.010 DOI

Shumilova, O. et al. Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Glob. Chang. Biol.25, 1591–1611 (2019). 10.1111/gcb.14537 PubMed DOI PMC

Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci.11, 497 (2018).10.1038/s41561-018-0134-4 DOI

von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles33, 1251–1263 (2019).10.1029/2019GB006276 DOI

Chen, J. et al. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ. Microbiol.22, 832–849 (2020). 10.1111/1462-2920.14795 PubMed DOI

Mora-Gómez, J. et al. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiol. Ecol. fiw121 10.1093/femsec/fiw121 (2016). PubMed

Romaní, A. M. et al. The biota of intermittent rivers and ephemeral streams: prokaryotes, fungi, and protozoans. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 161–188 (Academic Press, Burlington, 2017).

Barberán, A., Casamayor, E. O. & Fierer, N. The microbial contribution to macroecology. Evol. Genom. Microbiol.5, 203 (2014). PubMed PMC

Besemer, K. et al. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc. R. Soc. B Biol. Sci.280, 20131760 (2013).10.1098/rspb.2013.1760 PubMed DOI PMC

Cañedo-Argüelles, M. et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 10.1111/jbi.12457 (2015).

Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol.63, 141–163 (2018).10.1111/fwb.13037 DOI

Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc.30, 963–980 (2011).10.1899/11-012.1 DOI

Gauthier, M. et al. Fragmentation promotes the role of dispersal in determining 10 intermittent headwater stream metacommunities. Freshw. Biol.65, 2169–2185 (2020).10.1111/fwb.13611 DOI

Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology88, 1386–1394 (2007). 10.1890/06-0219 PubMed DOI

Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci. Rev.188, 441–453 (2019).10.1016/j.earscirev.2018.12.001 DOI

Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology88, 1354–1364 (2007). 10.1890/05-1839 PubMed DOI

de Vries, F. T. & Griffiths, R. I. Impacts of climate change on soil microbial communities and their functioning. in Developments in Soil Science (eds. Horwath, W. R. & Kuzyakov, Y.) vol. 35 111–129 (Elsevier, 2018).

Piton, G. et al. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J. Ecol.108, 876–893 (2020).10.1111/1365-2745.13327 DOI

Gionchetta, G., Romaní, A. M., Oliva, F. & Artigas, J. Distinct responses from bacterial, archaeal and fungal streambed communities to severe hydrological disturbances. Sci. Rep.9, 13506 (2019). 10.1038/s41598-019-49832-4 PubMed DOI PMC

Sabater, S. et al. The biota of intermittent rivers and ephemeral streams: algae and vascular plants. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 189–216 (Academic Press, Burlington, 2017).

Rebecchi, L., Boschetti, C. & Nelson, D. R. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes. Hydrobiologia847, 2779–2799 (2020).10.1007/s10750-019-04144-6 DOI

Stubbington, R. et al. The biota of intermittent rivers and ephemeral streams: aquatic invertebrates. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 217–243 (Academic Press, Burlington, 2017). 10.1016/B978-0-12-803835-2.00007-3.

Corti, R. & Datry, T. Terrestrial and aquatic invertebrates in the riverbed of an intermittent river: parallels and contrasts in community organisation. Freshw. Biol.61, 1308–1320 (2016).10.1111/fwb.12692 DOI

Pařil, P. et al. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshw. Biol.64, 1971–1983 (2019).10.1111/fwb.13386 DOI

Sánchez-Montoya, M. M. et al. Dynamics of ground-dwelling arthropod metacommunities in intermittent streams: the key role of dry riverbeds. Biol. Conserv.241, 108328 (2020).10.1016/j.biocon.2019.108328 DOI

Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol.21, 1789–1793 (2012). 10.1111/j.1365-294X.2012.05542.x PubMed DOI

Pawlowski, J. et al. Environmental DNA metabarcoding for benthic monitoring: a review of sediment sampling and DNA extraction methods. Sci. Total Environ.818, 151783 (2022). 10.1016/j.scitotenv.2021.151783 PubMed DOI

Blackman, R. C. et al. Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools. Front. Ecol. Environ.19, 574–583 (2021).10.1002/fee.2404 DOI

Liu, T. et al. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome6, 1–14 (2018). 10.1186/s40168-017-0388-x PubMed DOI PMC

Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol.14, 251–263 (2016). 10.1038/nrmicro.2016.15 PubMed DOI

Li, F. et al. Human activities’ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol.26, 6867–6879 (2020).10.1111/gcb.15357 PubMed DOI

Bienhold, C., Boetius, A. & Ramette, A. The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J.6, 724–732 (2012). 10.1038/ismej.2011.140 PubMed DOI PMC

Bardgett, R. D., Bowman, W. D., Kaufmann, R. & Schmidt, S. K. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol.20, 634–641 (2005). 10.1016/j.tree.2005.08.005 PubMed DOI

Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett.11, 1111–1120 (2008). 10.1111/j.1461-0248.2008.01230.x PubMed DOI

Passy, S. I. Continental diatom biodiversity in stream benthos declines as more nutrients become limiting. Proc. Natl Acad. Sci.105, 9663–9667 (2008). 10.1073/pnas.0802542105 PubMed DOI PMC

Steward, A. L., Negus, P., Marshall, J. C., Clifford, S. E. & Dent, C. Assessing the ecological health of rivers when they are dry. Ecol. Indic.85, 537–547 (2018).10.1016/j.ecolind.2017.10.053 DOI

She, W. et al. Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Front. Microbiol. 9, 186 (2018). PubMed PMC

Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J.14, 1–9 (2020). 10.1038/s41396-019-0510-0 PubMed DOI PMC

Pohlon, E., Ochoa Fandino, A. & Marxsen, J. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS ONE8, e83365 (2013). 10.1371/journal.pone.0083365 PubMed DOI PMC

Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv.16, 49–67 (2007).10.1007/s10531-006-9120-z DOI

Ho, A., Di Lonardo, D. P. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93, (2017). PubMed

Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol.15, 579–590 (2017). 10.1038/nrmicro.2017.87 PubMed DOI

Berney, C., Fahrni, J. & Pawlowski, J. How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol.2, 13 (2004). 10.1186/1741-7007-2-13 PubMed DOI PMC

Simon, M. et al. Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events. Front. Microbiol. 7, 812 (2016). PubMed PMC

Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev.97, 1057–1117 (2022). 10.1111/brv.12832 PubMed DOI

Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev.42, 293–323 (2018). 10.1093/femsre/fuy006 PubMed DOI

Datry, T., Corti, R. & Philippe, M. Spatial and temporal aquatic–terrestrial transitions in the temporary Albarine River, France: responses of invertebrates to experimental rewetting. Freshw. Biol.57, 716–727 (2012).10.1111/j.1365-2427.2012.02737.x DOI

Bogan, M. T. et al. Resistance, resilience, and community recovery in intermittent rivers and ephemeral streams. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 349–376 (Academic Press, Burlington, 2017). 10.1016/B978-0-12-803835-2.00013-9.

Lundin, D. et al. Which sequencing depth is sufficient to describe patterns in bacterial α- and β-diversity? Environ. Microbiol. Rep.4, 367–372 (2012). 10.1111/j.1758-2229.2012.00345.x PubMed DOI

Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat. Methods7, 813–819 (2010). 10.1038/nmeth.1499 PubMed DOI PMC

Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci USA108, 4516–4522 (2011). 10.1073/pnas.1000080107 PubMed DOI PMC

Boer, W., de, Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev.29, 795–811 (2005). 10.1016/j.femsre.2004.11.005 PubMed DOI

Danger, M. et al. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology94, 1604–1613 (2013). 10.1890/12-0606.1 PubMed DOI

Kramer, S. et al. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Front. Microbiol. 7, 1524 (2016). PubMed PMC

Majdi, N. & Traunspurger, W. Free-living nematodes in the freshwater food web: a review. J. Nematol.47, 28–44 (2015). PubMed PMC

Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J.7, 652–659 (2013). 10.1038/ismej.2012.147 PubMed DOI PMC

Fierer, N., Morse, J. L., Berthrong, S. T., Bernhardt, E. S. & Jackson, R. B. Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology88, 2162–2173 (2007). 10.1890/06-1746.1 PubMed DOI

Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. BioScience66, 393–400 (2016).10.1093/biosci/biw022 DOI

Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol.2, 1042–1043 (2018). 10.1038/s41559-018-0573-8 PubMed DOI PMC

Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol.29, 4258–4264 (2020). 10.1111/mec.15643 PubMed DOI

Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. mBio9, e00637–18 (2018). 10.1128/mBio.00637-18 PubMed DOI PMC

Bizic, M. et al. Land-use type temporarily affects active pond community structure but not gene expression patterns. Mol. Ecol.31, 1716–1734 (2022). 10.1111/mec.16348 PubMed DOI

Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol.55, 147–170 (2010).10.1111/j.1365-2427.2009.02204.x DOI

Datry, T., Corti, R., Foulquier, A., Von Schiller, D. & Tockner, T. One for all, all for one: a global river research network. EOS Earth Space Sci. N.97, 13–15 (2016).

Tedersoo, L. et al. Global diversity and geography of soil fungi. Science346, 1256688 (2014). 10.1126/science.1256688 PubMed DOI

Gray, M. A., Pratte, Z. A. & Kellog, C. A. Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiol. Ecol.83, 468–477 (2013). 10.1111/1574-6941.12008 PubMed DOI

Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett.307, 80–86 (2010). 10.1111/j.1574-6968.2010.01965.x PubMed DOI PMC

Guardiola, M. et al. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE10, e0139633 (2015). 10.1371/journal.pone.0139633 PubMed DOI PMC

Banos, S. et al. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol18, 190 (2018). 10.1186/s12866-018-1331-4 PubMed DOI PMC

Tedersoo, L. et al. Best practices in metabarcoding of fungi: From experimental design to results. Mol. Ecol.31, 2769–2795 (2022). 10.1111/mec.16460 PubMed DOI

Boyer, F. et al. OBITools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour.16, 176–182 (2016). 10.1111/1755-0998.12428 PubMed DOI

Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. in Programs and Abstracts of the SeqBio 2013 workshop. Abstract 27–29 (Citeseer, 2013).

Li, H. et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Glob. Change Biol.27, 2763–2779 (2021).10.1111/gcb.15593 PubMed DOI

R. Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna. http://www.R-project.org (2019).

Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics43, 783–791 (1987). 10.2307/2531532 PubMed DOI

Oksanen, J. et al. Vegan community ecology package version 2.5-7 November 2020. R Proj. Stat. Comput. Vienna Austria (2020).

Liaw, A. & Wiener, M. Classification and regression by randomForest. R News2, 18–22 (2002).

Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography36, 27–46 (2013).10.1111/j.1600-0587.2012.07348.x DOI

Cutler, D. R. et al. Random forests for classification in ecology. Ecology88, 2783–2792 (2007). 10.1890/07-0539.1 PubMed DOI

Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinforma.8, 1–21 (2007).10.1186/1471-2105-8-25 PubMed DOI PMC

Kohavi, R. & John, G. H. Wrappers for feature subset selection. Artif. Intell.97, 273–324 (1997).10.1016/S0004-3702(97)00043-X DOI

Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput.27, 659–678 (2017).10.1007/s11222-016-9646-1 DOI

Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia129, 271–280 (2001). 10.1007/s004420100716 PubMed DOI

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). 10.1093/bioinformatics/bty633 PubMed DOI

Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R Package Version 041, (2020).

Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics9, 432–441 (2008). 10.1093/biostatistics/kxm045 PubMed DOI PMC

Ohlmann, M. et al. Mapping the imprint of biotic interactions on β-diversity. Ecol. Lett.21, 1660–1669 (2018). 10.1111/ele.13143 PubMed DOI

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric. Data. J. Stat. Softw.48, 1–18 (2012).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...