Unravelling large-scale patterns and drivers of biodiversity in dry rivers
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
869226 (DRYvER)
EC | EU Framework Programme for Research and Innovation H2020 | H2020 European Institute of Innovation and Technology (H2020 The European Institute of Innovation and Technology)
PubMed
39174521
PubMed Central
PMC11341732
DOI
10.1038/s41467-024-50873-1
PII: 10.1038/s41467-024-50873-1
Knihovny.cz E-zdroje
- MeSH
- Archaea klasifikace genetika MeSH
- Bacteria klasifikace genetika MeSH
- bezobratlí klasifikace MeSH
- biodiverzita * MeSH
- geologické sedimenty mikrobiologie MeSH
- houby klasifikace genetika MeSH
- řeky * mikrobiologie MeSH
- rostliny klasifikace MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds. We focus on eight major taxa, including microorganisms, invertebrates and plants: Algae, Archaea, Bacteria, Fungi, Protozoa, Arthropods, Nematodes and Streptophyta. We use environmental DNA metabarcoding to assess biodiversity in dry sediments collected over a 1-year period from 84 non-perennial rivers across 19 countries on four continents. Both direct factors, such as nutrient and carbon availability, and indirect factors such as climate influence the local biodiversity of most taxa. Limited resource availability and prolonged dry phases favor oligotrophic microbial taxa. Co-variation among taxa, particularly Bacteria, Fungi, Algae and Protozoa, explain more spatial variation in community composition than dispersal or environmental gradients. This finding suggests that biotic interactions or unmeasured ecological and evolutionary factors may strongly influence communities during dry phases, altering biodiversity responses to global changes.
Asociación Meles Plaza de las Américas 13 2B Alhama de Murcia Spain
Australian Rivers Institute Griffith University Nathan QLD Australia
Balearic Biodiversity Centre Department of Biology University of the Balearic Islands Palma Spain
Berlin Institute of Technology Berlin Germany
Biosciences and Food Technology Discipline School of Science RMIT University Bundoora VIC Australia
California Department of Fish and Wildlife Ontario CA USA
Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
Centre for Research on Ecology and Forestry Applications Barcelona Spain
Department of Biosciences Mangalore University Mangalagangotri Mangalore Karnataka India
Department of Ecology and Animal Biology University of Vigo Vigo Spain
Department of Ecoscience Aarhus University Aarhus C Denmark
Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
Department of Freshwater Invertebrates Albany Museum Makhanda Makhanda South Africa
Department of Geography University of the Balearic Islands Palma Spain
Department of Life Sciences and Systems Biology University of Turin Torino Italy
Division of Zoology Faculty of Science University of Zagreb Zagreb Croatia
Ezemvelo KZN Wildlife Pietermaritzburg South Africa
Facultad de Ingeniería Arquitectura y Diseño Universidad San Sebastián Concepción Chile
Faculty of Marine Sciences Ruppin Academic Center Michmoret Israel
FEHM Lab Avda Diagonal 643 Barcelona Spain
Goethe Universität Frankfurt Department of BioSciences Frankfurt aM Germany
iES RPTU University of Kaiserslautern Landau Forstrstr 7 Landau Germany
INIBIOMA CONICET Quintral 1250 Bariloche Argentina
INRAE UR RiverLY Centre de Lyon Villeurbanne Villeurbanne Cedex France
IRTA Marine and Continental Waters Programme La Ràpita Catalonia Spain
Israel Nature and Parks Authority Jerusalem Israel
Masaryk University Faculty of Science Department of Botany and Zoology Brno Czech Republic
Mine Water and Environment Research Centre Edith Cowan University Joondalup WA Australia
Missouri University of Science and Technology Rolla MO USA
NIVA Norwegian Institute for Water Research Oslo Norway
Open University of Cyprus PO Box 12794 Latsia Nicosia Cyprus
Queen Mary University of London London UK
Queensland Government Department of Environment Science and Innovation Brisbane QLD Australia
Real Estate and Workplace Services Sustainability Team Google Mountain View CA USA
School of Environmental and Rural Science University of New England Armidale NSW Australia
School of Natural Resources and the Environment University of Arizona Tucson AZ USA
School of Science and Technology Nottingham Trent University Nottingham UK
Senckenberg Biodiversity and Climate Research Centre Senckenberganlage 25 Frankfurt am Main Germany
Senckenberg Gesellschaft für Naturforschung Frankfurt aM Germany
Simon Fraser University Burnaby BC Canada
SUPSI Institute of Microbiology Mendrisio Switzerland
Swiss Federal Institute for Aquatic Science and Technology Dübendorf Switzerland
The Pennsylvania State University Department of Ecosystem Science and Management University Park USA
Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA Grenoble France
Universidade Estadual Vale do Acaraú Centro de Ciências Agrárias e Biológicas Campus Betânia Brazil
Université de Corse UAR 3514 CNRS Stella Mare Biguglia France
Université de Lorraine INRAE URAFPA Nancy France
Université de Lorraine LIEC UMR CNRS 7360 Metz France
University of California Berkeley Berkeley CA USA
University of Canberra Centre for Applied Water Science Canberra ACT Australia
University of Canterbury School of Biological Sciences Christchurch New Zealand
University of Innsbruck Department of Ecology Innsbruck Austria
University of Münster Institute for Evolution and Biodiversity Münster Germany
University of Murcia Department of Ecology and Hydrology Murcia Spain
University of Niš Faculty of Science and Mathematics Department of Biology and Ecology Niš Serbia
University of San Diego Department of Biology San Diego CA USA
University of the Basque Country Department of Plant Biology and Ecology Bilbao Spain
University of Tlemcen Tlemcen Algeria
University of Wisconsin La Crosse Biology Department La Crosse WI USA
Water Laboratory University of Évora P 1 T E Rua da Barba Rala No 1 7005 345 Évora Portugal
Zobrazit více v PubMed
He, F. et al. The global decline of freshwater megafauna. Glob. Chang. Biol.25, 3883–3892 (2019). 10.1111/gcb.14753 PubMed DOI
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev.94, 849–873 (2019). 10.1111/brv.12480 PubMed DOI
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev.81, 163–182 (2006). 10.1017/S1464793105006950 PubMed DOI
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv.232, 8–27 (2019).10.1016/j.biocon.2019.01.020 DOI
Crabot, J. et al. A global perspective on the functional responses of stream communities to flow intermittence. Ecography44, 1511–1523 (2021). 10.1111/ecog.05697 PubMed DOI PMC
Soria, M., Leigh, C., Datry, T., Bini, L. M. & Bonada, N. Biodiversity in perennial and intermittent rivers: a meta-analysis. Oikos126, 1078–1089 (2017).10.1111/oik.04118 DOI
Datry, T. et al. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol.55, 353–364 (2018). 10.1111/1365-2664.12941 PubMed DOI PMC
Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature594, 391–397 (2021). 10.1038/s41586-021-03565-5 PubMed DOI
Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci USA111, 13894–13899 (2014). 10.1073/pnas.1320890111 PubMed DOI PMC
Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience64, 229–235 (2014).10.1093/biosci/bit027 DOI
Datry, T. et al. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography37, 94–104 (2014).10.1111/j.1600-0587.2013.00287.x DOI
Steward, A. L., Datry, T. & Langhans, S. D. The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams. Biol. Rev.97, 1408–1425 (2022). 10.1111/brv.12848 PubMed DOI PMC
Sánchez-Montoya, M. M. et al. Intermittent rivers and ephemeral streams are pivotal corridors for aquatic and terrestrial animals. BioScience73, 291–301 (2023).10.1093/biosci/biad004 DOI
B-Béres, V. et al. Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Adv. Water Resour.126, 129–136 (2019).10.1016/j.advwatres.2019.02.010 DOI
Shumilova, O. et al. Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Glob. Chang. Biol.25, 1591–1611 (2019). 10.1111/gcb.14537 PubMed DOI PMC
Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci.11, 497 (2018).10.1038/s41561-018-0134-4 DOI
von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles33, 1251–1263 (2019).10.1029/2019GB006276 DOI
Chen, J. et al. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ. Microbiol.22, 832–849 (2020). 10.1111/1462-2920.14795 PubMed DOI
Mora-Gómez, J. et al. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiol. Ecol. fiw121 10.1093/femsec/fiw121 (2016). PubMed
Romaní, A. M. et al. The biota of intermittent rivers and ephemeral streams: prokaryotes, fungi, and protozoans. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 161–188 (Academic Press, Burlington, 2017).
Barberán, A., Casamayor, E. O. & Fierer, N. The microbial contribution to macroecology. Evol. Genom. Microbiol.5, 203 (2014). PubMed PMC
Besemer, K. et al. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc. R. Soc. B Biol. Sci.280, 20131760 (2013).10.1098/rspb.2013.1760 PubMed DOI PMC
Cañedo-Argüelles, M. et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 10.1111/jbi.12457 (2015).
Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol.63, 141–163 (2018).10.1111/fwb.13037 DOI
Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc.30, 963–980 (2011).10.1899/11-012.1 DOI
Gauthier, M. et al. Fragmentation promotes the role of dispersal in determining 10 intermittent headwater stream metacommunities. Freshw. Biol.65, 2169–2185 (2020).10.1111/fwb.13611 DOI
Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology88, 1386–1394 (2007). 10.1890/06-0219 PubMed DOI
Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci. Rev.188, 441–453 (2019).10.1016/j.earscirev.2018.12.001 DOI
Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology88, 1354–1364 (2007). 10.1890/05-1839 PubMed DOI
de Vries, F. T. & Griffiths, R. I. Impacts of climate change on soil microbial communities and their functioning. in Developments in Soil Science (eds. Horwath, W. R. & Kuzyakov, Y.) vol. 35 111–129 (Elsevier, 2018).
Piton, G. et al. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J. Ecol.108, 876–893 (2020).10.1111/1365-2745.13327 DOI
Gionchetta, G., Romaní, A. M., Oliva, F. & Artigas, J. Distinct responses from bacterial, archaeal and fungal streambed communities to severe hydrological disturbances. Sci. Rep.9, 13506 (2019). 10.1038/s41598-019-49832-4 PubMed DOI PMC
Sabater, S. et al. The biota of intermittent rivers and ephemeral streams: algae and vascular plants. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 189–216 (Academic Press, Burlington, 2017).
Rebecchi, L., Boschetti, C. & Nelson, D. R. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes. Hydrobiologia847, 2779–2799 (2020).10.1007/s10750-019-04144-6 DOI
Stubbington, R. et al. The biota of intermittent rivers and ephemeral streams: aquatic invertebrates. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 217–243 (Academic Press, Burlington, 2017). 10.1016/B978-0-12-803835-2.00007-3.
Corti, R. & Datry, T. Terrestrial and aquatic invertebrates in the riverbed of an intermittent river: parallels and contrasts in community organisation. Freshw. Biol.61, 1308–1320 (2016).10.1111/fwb.12692 DOI
Pařil, P. et al. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshw. Biol.64, 1971–1983 (2019).10.1111/fwb.13386 DOI
Sánchez-Montoya, M. M. et al. Dynamics of ground-dwelling arthropod metacommunities in intermittent streams: the key role of dry riverbeds. Biol. Conserv.241, 108328 (2020).10.1016/j.biocon.2019.108328 DOI
Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol.21, 1789–1793 (2012). 10.1111/j.1365-294X.2012.05542.x PubMed DOI
Pawlowski, J. et al. Environmental DNA metabarcoding for benthic monitoring: a review of sediment sampling and DNA extraction methods. Sci. Total Environ.818, 151783 (2022). 10.1016/j.scitotenv.2021.151783 PubMed DOI
Blackman, R. C. et al. Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools. Front. Ecol. Environ.19, 574–583 (2021).10.1002/fee.2404 DOI
Liu, T. et al. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome6, 1–14 (2018). 10.1186/s40168-017-0388-x PubMed DOI PMC
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol.14, 251–263 (2016). 10.1038/nrmicro.2016.15 PubMed DOI
Li, F. et al. Human activities’ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol.26, 6867–6879 (2020).10.1111/gcb.15357 PubMed DOI
Bienhold, C., Boetius, A. & Ramette, A. The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J.6, 724–732 (2012). 10.1038/ismej.2011.140 PubMed DOI PMC
Bardgett, R. D., Bowman, W. D., Kaufmann, R. & Schmidt, S. K. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol.20, 634–641 (2005). 10.1016/j.tree.2005.08.005 PubMed DOI
Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett.11, 1111–1120 (2008). 10.1111/j.1461-0248.2008.01230.x PubMed DOI
Passy, S. I. Continental diatom biodiversity in stream benthos declines as more nutrients become limiting. Proc. Natl Acad. Sci.105, 9663–9667 (2008). 10.1073/pnas.0802542105 PubMed DOI PMC
Steward, A. L., Negus, P., Marshall, J. C., Clifford, S. E. & Dent, C. Assessing the ecological health of rivers when they are dry. Ecol. Indic.85, 537–547 (2018).10.1016/j.ecolind.2017.10.053 DOI
She, W. et al. Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Front. Microbiol. 9, 186 (2018). PubMed PMC
Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J.14, 1–9 (2020). 10.1038/s41396-019-0510-0 PubMed DOI PMC
Pohlon, E., Ochoa Fandino, A. & Marxsen, J. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS ONE8, e83365 (2013). 10.1371/journal.pone.0083365 PubMed DOI PMC
Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv.16, 49–67 (2007).10.1007/s10531-006-9120-z DOI
Ho, A., Di Lonardo, D. P. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93, (2017). PubMed
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol.15, 579–590 (2017). 10.1038/nrmicro.2017.87 PubMed DOI
Berney, C., Fahrni, J. & Pawlowski, J. How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol.2, 13 (2004). 10.1186/1741-7007-2-13 PubMed DOI PMC
Simon, M. et al. Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events. Front. Microbiol. 7, 812 (2016). PubMed PMC
Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev.97, 1057–1117 (2022). 10.1111/brv.12832 PubMed DOI
Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev.42, 293–323 (2018). 10.1093/femsre/fuy006 PubMed DOI
Datry, T., Corti, R. & Philippe, M. Spatial and temporal aquatic–terrestrial transitions in the temporary Albarine River, France: responses of invertebrates to experimental rewetting. Freshw. Biol.57, 716–727 (2012).10.1111/j.1365-2427.2012.02737.x DOI
Bogan, M. T. et al. Resistance, resilience, and community recovery in intermittent rivers and ephemeral streams. in Intermittent rivers and ephemeral streams (eds. Datry, T., Bonada, N. & Boulton, A.) 349–376 (Academic Press, Burlington, 2017). 10.1016/B978-0-12-803835-2.00013-9.
Lundin, D. et al. Which sequencing depth is sufficient to describe patterns in bacterial α- and β-diversity? Environ. Microbiol. Rep.4, 367–372 (2012). 10.1111/j.1758-2229.2012.00345.x PubMed DOI
Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat. Methods7, 813–819 (2010). 10.1038/nmeth.1499 PubMed DOI PMC
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci USA108, 4516–4522 (2011). 10.1073/pnas.1000080107 PubMed DOI PMC
Boer, W., de, Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev.29, 795–811 (2005). 10.1016/j.femsre.2004.11.005 PubMed DOI
Danger, M. et al. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology94, 1604–1613 (2013). 10.1890/12-0606.1 PubMed DOI
Kramer, S. et al. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Front. Microbiol. 7, 1524 (2016). PubMed PMC
Majdi, N. & Traunspurger, W. Free-living nematodes in the freshwater food web: a review. J. Nematol.47, 28–44 (2015). PubMed PMC
Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J.7, 652–659 (2013). 10.1038/ismej.2012.147 PubMed DOI PMC
Fierer, N., Morse, J. L., Berthrong, S. T., Bernhardt, E. S. & Jackson, R. B. Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology88, 2162–2173 (2007). 10.1890/06-1746.1 PubMed DOI
Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. BioScience66, 393–400 (2016).10.1093/biosci/biw022 DOI
Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol.2, 1042–1043 (2018). 10.1038/s41559-018-0573-8 PubMed DOI PMC
Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol.29, 4258–4264 (2020). 10.1111/mec.15643 PubMed DOI
Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. mBio9, e00637–18 (2018). 10.1128/mBio.00637-18 PubMed DOI PMC
Bizic, M. et al. Land-use type temporarily affects active pond community structure but not gene expression patterns. Mol. Ecol.31, 1716–1734 (2022). 10.1111/mec.16348 PubMed DOI
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol.55, 147–170 (2010).10.1111/j.1365-2427.2009.02204.x DOI
Datry, T., Corti, R., Foulquier, A., Von Schiller, D. & Tockner, T. One for all, all for one: a global river research network. EOS Earth Space Sci. N.97, 13–15 (2016).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science346, 1256688 (2014). 10.1126/science.1256688 PubMed DOI
Gray, M. A., Pratte, Z. A. & Kellog, C. A. Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiol. Ecol.83, 468–477 (2013). 10.1111/1574-6941.12008 PubMed DOI
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett.307, 80–86 (2010). 10.1111/j.1574-6968.2010.01965.x PubMed DOI PMC
Guardiola, M. et al. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE10, e0139633 (2015). 10.1371/journal.pone.0139633 PubMed DOI PMC
Banos, S. et al. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol18, 190 (2018). 10.1186/s12866-018-1331-4 PubMed DOI PMC
Tedersoo, L. et al. Best practices in metabarcoding of fungi: From experimental design to results. Mol. Ecol.31, 2769–2795 (2022). 10.1111/mec.16460 PubMed DOI
Boyer, F. et al. OBITools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour.16, 176–182 (2016). 10.1111/1755-0998.12428 PubMed DOI
Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. in Programs and Abstracts of the SeqBio 2013 workshop. Abstract 27–29 (Citeseer, 2013).
Li, H. et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Glob. Change Biol.27, 2763–2779 (2021).10.1111/gcb.15593 PubMed DOI
R. Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna. http://www.R-project.org (2019).
Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics43, 783–791 (1987). 10.2307/2531532 PubMed DOI
Oksanen, J. et al. Vegan community ecology package version 2.5-7 November 2020. R Proj. Stat. Comput. Vienna Austria (2020).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News2, 18–22 (2002).
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography36, 27–46 (2013).10.1111/j.1600-0587.2012.07348.x DOI
Cutler, D. R. et al. Random forests for classification in ecology. Ecology88, 2783–2792 (2007). 10.1890/07-0539.1 PubMed DOI
Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinforma.8, 1–21 (2007).10.1186/1471-2105-8-25 PubMed DOI PMC
Kohavi, R. & John, G. H. Wrappers for feature subset selection. Artif. Intell.97, 273–324 (1997).10.1016/S0004-3702(97)00043-X DOI
Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput.27, 659–678 (2017).10.1007/s11222-016-9646-1 DOI
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia129, 271–280 (2001). 10.1007/s004420100716 PubMed DOI
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). 10.1093/bioinformatics/bty633 PubMed DOI
Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R Package Version 041, (2020).
Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics9, 432–441 (2008). 10.1093/biostatistics/kxm045 PubMed DOI PMC
Ohlmann, M. et al. Mapping the imprint of biotic interactions on β-diversity. Ecol. Lett.21, 1660–1669 (2018). 10.1111/ele.13143 PubMed DOI
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric. Data. J. Stat. Softw.48, 1–18 (2012).