Biodiversity in remnants of natural mountain forests under conservation-oriented management

. 2019 Jan 14 ; 9 (1) : 89. [epub] 20190114

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30643166
Odkazy

PubMed 30643166
PubMed Central PMC6331614
DOI 10.1038/s41598-018-35448-7
PII: 10.1038/s41598-018-35448-7
Knihovny.cz E-zdroje

The structure of forests is an important stabilizing factor regarding ongoing global climate and land use change. Biodiverse mountain forests with natural structure are one of the ecosystems most endangered by these problems. We focused on the mountain forest islands of European beech (Fagus sylvatica) and their role in the natural distribution of organisms. The study area was situated in the oldest Czech national park, Krkonoše (385 km2), which is the highest mountain ridge in the country. We studied multi-taxa (lichens, beetles and hymenopterans) responses to three hierarchical spatial levels of the environment: the topography was described by the elevation gradient; the patch structure was described by canopy openness, dead wood amounts, and Norway spruce (Picea abies) cover; and the tree level was described by species of the sampled tree and its diameter. Lichens preferred higher elevations, while insect groups responded conversely. Furthermore, insect groups were mainly influenced by the inner patch structure of beech islands. Lichens may be jeopardized due to the predicted future increase in temperatures, since they would need to shift toward higher altitudes. Insects may be mainly threatened in the future by land use changes (i.e., forest management) - as indicated by an interconnection of canopy openness and the amount of dead wood.

Zobrazit více v PubMed

Messier, C., Puettmann, K. J. & Coates, K. D. Managing forests as complex adaptive systems: building resilience to the challenge of global change (eds Messier, C., Klaus, J. & Puettmann, K.) (London, Routledge, 2013).

Bauhus, J., van der Meer, P. & Kanninen, M. Ecosystem goods and services from plantation forests (eds Bauhus, J., van der Meer, P., & Kanninen, M.) (Routledge, 2010).

Kotecký V. Contribution of afforestation subsidies policy to climate change adaptation in the Czech Republic. Land Use Policy. 2015;47:112–120. doi: 10.1016/j.landusepol.2015.03.014. DOI

Leban V, Malovrh ŠP, Stirn LZ, Krč J. Forest biomass for energy in multi-functional forest management: insight into the perceptions of forest-related professionals. Forest Policy Econom. 2015;71:87–93. doi: 10.1016/j.forpol.2015.07.005. DOI

Simeonova K. Policies and measures to address climate change in Central and Eastern European Countries. Appl. Energ. 1997;56:445–461. doi: 10.1016/S0306-2619(97)00023-8. DOI

Grove SJ. Saproxylic insect ecology and the sustainable management of forests. Annu. Rev. Ecol. Syst. 2002;33:1–23. doi: 10.1146/annurev.ecolsys.33.010802.150507. DOI

FOREST EUROPE & UNECE, FAO State. State of Europe’s Forests. Status and Trends in Sustainable Forest Management. Forest EUROPE Liaison Unit Oslo, Aas (2011).

Loskotová T, Horák J. The influence of mature oak stands and spruce plantations on soil-dwelling click beetles in lowland plantation forests. PeerJ. 2016;4:e1568. doi: 10.7717/peerj.1568. PubMed DOI PMC

Mladenović, S. et al. The effects of within stand disturbance in plantation forests indicate complex and contrasting responses among and within beetle families. Bull. Entomol. Res. 108, 750–764 (2018). PubMed

Humphrey JW, Ferris R, Jukes MR, Peace AJ. The potential contribution of conifer plantations to the UK biodiversity Action Plan. Bot. J. Scotl. 2002;54:49–62. doi: 10.1080/03746600208685028. DOI

Holuša, J. et al. Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecol. Manage., 427, 434–445 (2018).

Fanta J. Krkonošský národní park 50 let. Živa. 2013;4:157–159.

Bauhus J, Puettmann K, Messier C. Silviculture for old-growth attributes. Forest Ecol. Manage. 2009;258:525–537. doi: 10.1016/j.foreco.2009.01.053. DOI

Parviainen, J. & Schuck, A. Maintenance, conservation and appropriate enhancement of biological diversity in forest ecosystems. In state of Europe’s forests 2011 status and trends in sustainable forest management in Europe (eds FOREST EUROPE & UNECE, FAO State) 65–97, (2011).

Ohlson M, Söderström L, Hörnberg G, Zackrisson O, Hermansson J. Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biol. Conserv. 1997;81:221–231. doi: 10.1016/S0006-3207(97)00001-3. DOI

Paillet Y, et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 2010;24:101–112. doi: 10.1111/j.1523-1739.2009.01399.x. PubMed DOI

Jakub H., et al. Green desert?: Biodiversity patterns in forest plantations. Forest Ecology and Management433, 343–348 (2019).

Niemelä J, Koivula M, Kotze DJ. The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J. Insect Conserv. 2007;11:5–18. doi: 10.1007/s10841-006-9014-0. DOI

Uliczka H, Angelstam P. Occurrence of epiphytic macrolichens in relation to tree species and age in managed boreal forest. Ecography. 1999;22:396–405. doi: 10.1111/j.1600-0587.1999.tb00576.x. DOI

Horák J. Insect ecology and veteran trees. J. Insect Conserv. 2017;21:1–5. doi: 10.1007/s10841-017-9953-7. DOI

Horák J, et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. Forest Ecol. Manage. 2014;315:80–85. doi: 10.1016/j.foreco.2013.12.018. DOI

Esseen PA, Renhorn KE, Pettersson RB. Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecol. Appl. 1996;6:228–238. doi: 10.2307/2269566. DOI

Gauslaa Y, Solhaug KA. Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct. Ecol. 1996;10:344–354. doi: 10.2307/2390282. DOI

Dittrich S, Jacob M, Bade C, Leuschner C, Hauck M. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol. 2014;215:1123–1137. doi: 10.1007/s11258-014-0371-6. DOI

Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (eds Stokland, J. N., Siitonen, J. & Jonsson, B. G.) (Cambridge, Cambridge University Press, 2012).

Moning C, et al. Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecol. Manage. 2009;258:745–751. doi: 10.1016/j.foreco.2009.05.015. DOI

Gibb H, et al. Effects of management on coarse woody debris volume and composition in boreal forests in northern Sweden. Scand. J. Forest Res. 2005;20:213–222. doi: 10.1080/02827580510008392. DOI

Hilszczański J, Gibb H, Bystrowski C. Insect natural enemies of Ips typographus (L.)(Coleoptera, Scolytinae) in managed and unmanaged stands of mixed lowland forest in Poland. J. Pest. Sci. 2007;80:99–107. doi: 10.1007/s10340-006-0160-7. DOI

Brunet J, Fritz O, Richnau G. Biodiversity in European beech forests – a review with recommendations for sustainable forest management. Ecol. Bull. 2010;53:77–94.

Uliczka H, Angelstam P. Assessing conservation values of forest stands based on specialised lichens and birds. Biol. Conserv. 2000;95:343–351. doi: 10.1016/S0006-3207(00)00022-7. DOI

Flousek, J., Hartmanová, O., Štursa, J. & Potocki, J. Krkonoše, příroda, historie, život. Miloš Uhlíř – Baset, Praha (2007).

Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 2002;157:331–341. doi: 10.1016/S0304-3800(02)00203-X. DOI

Horák J. Response of saproxylic beetles to tree species composition in a secondary urban forest area. Urban For. Urban Gree. 2011;10:213–222. doi: 10.1016/j.ufug.2011.04.002. DOI

Bässler C, et al. Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol. Indic. 2010;10:341–352. doi: 10.1016/j.ecolind.2009.06.014. DOI

Horák J, Kout J, Vodka Š, Donato DC. Dead wood dependent organisms in one of the oldest protected forests of Europe: investigating the contrasting effects of within-stand variation in a highly diversified environment. Forest Ecol. Manage. 2016;363:229–236. doi: 10.1016/j.foreco.2015.12.041. DOI

Seibold S, et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 2016;53:934–943. doi: 10.1111/1365-2664.12607. DOI

Horak J, Pavlicek J. Tree level indicators of species composition of saproxylic beetles in old-growth mountainous spruce–beech forest through variation partitioning. J. Insect Conserv. 2013;17:1003–1009. doi: 10.1007/s10841-013-9583-7. DOI

Buse J, Entling MH, Ranius T, Assmann T. Response of saproxylic beetles to small-scale habitat connectivity depends on trophic levels. Landscape Ecol. 2016;31:939–949. doi: 10.1007/s10980-015-0309-y. DOI

Horák J, Vodka Š, Pavlíček J, Boža P. Unexpected visitors: flightless beetles in window traps. J. Insect Conserv. 2013;17:441–449. doi: 10.1007/s10841-012-9526-8. DOI

Fritz Ö, Niklasson M, Churski M. Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl. Veget. Sci. 2009;12:93–106. doi: 10.1111/j.1654-109X.2009.01007.x. DOI

Moning C, Müller J. Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol. Indic. 2009;9:922–932. doi: 10.1016/j.ecolind.2008.11.002. DOI

Horák J. Threatened or harmful? Opportunism across spatial scales apparently leads to success during extralimital colonisation. Insect Conserv. Divers. 2016;9:351–357. doi: 10.1111/icad.12174. DOI

Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur. J. Forest Res. 2010;129:981–992. doi: 10.1007/s10342-010-0400-5. DOI

Müller J, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography. 2015;38:499–509. doi: 10.1111/ecog.00908. DOI

Ge ZM, et al. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Tree Physiol. 2011;31:323–338. doi: 10.1093/treephys/tpr001. PubMed DOI

Röder J, et al. Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient. Forest Ecol. Manage. 2010;259:1513–1521. doi: 10.1016/j.foreco.2010.01.027. DOI

Ge ZM, Kellomäki S, Peltola H, Zhou X, Väisänen H. Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Clim. Change. 2013;118:275–289. doi: 10.1007/s10584-012-0656-5. DOI

Hlásny T, Holuša J, Štěpánek P, Turčáni M, Polčák N. Expected impacts of climate change on forests: Czech Republic as a case study. J. Forest Sci. 2011;57:422–431. doi: 10.17221/103/2010-JFS. DOI

Buse J. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 2012;16:93–102. doi: 10.1007/s10841-011-9396-5. DOI

Bobiec, A., Gutowski, J. M., Zub, K., Pawlaczyk, P. & Laudenslayer, W. F. The Afterlife of a Tree (Poland, Warszawa, World Wildlife Fund, 2005).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

What Are the Most Important Factors Influencing Springtail Tetrodontophora bielanensis?

. 2021 Sep 23 ; 12 (10) : . [epub] 20210923

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...