Biodiversity in remnants of natural mountain forests under conservation-oriented management
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30643166
PubMed Central
PMC6331614
DOI
10.1038/s41598-018-35448-7
PII: 10.1038/s41598-018-35448-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- brouci klasifikace MeSH
- Hymenoptera klasifikace MeSH
- lesy * MeSH
- lišejníky klasifikace MeSH
- prostorová analýza MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The structure of forests is an important stabilizing factor regarding ongoing global climate and land use change. Biodiverse mountain forests with natural structure are one of the ecosystems most endangered by these problems. We focused on the mountain forest islands of European beech (Fagus sylvatica) and their role in the natural distribution of organisms. The study area was situated in the oldest Czech national park, Krkonoše (385 km2), which is the highest mountain ridge in the country. We studied multi-taxa (lichens, beetles and hymenopterans) responses to three hierarchical spatial levels of the environment: the topography was described by the elevation gradient; the patch structure was described by canopy openness, dead wood amounts, and Norway spruce (Picea abies) cover; and the tree level was described by species of the sampled tree and its diameter. Lichens preferred higher elevations, while insect groups responded conversely. Furthermore, insect groups were mainly influenced by the inner patch structure of beech islands. Lichens may be jeopardized due to the predicted future increase in temperatures, since they would need to shift toward higher altitudes. Insects may be mainly threatened in the future by land use changes (i.e., forest management) - as indicated by an interconnection of canopy openness and the amount of dead wood.
Zobrazit více v PubMed
Messier, C., Puettmann, K. J. & Coates, K. D. Managing forests as complex adaptive systems: building resilience to the challenge of global change (eds Messier, C., Klaus, J. & Puettmann, K.) (London, Routledge, 2013).
Bauhus, J., van der Meer, P. & Kanninen, M. Ecosystem goods and services from plantation forests (eds Bauhus, J., van der Meer, P., & Kanninen, M.) (Routledge, 2010).
Kotecký V. Contribution of afforestation subsidies policy to climate change adaptation in the Czech Republic. Land Use Policy. 2015;47:112–120. doi: 10.1016/j.landusepol.2015.03.014. DOI
Leban V, Malovrh ŠP, Stirn LZ, Krč J. Forest biomass for energy in multi-functional forest management: insight into the perceptions of forest-related professionals. Forest Policy Econom. 2015;71:87–93. doi: 10.1016/j.forpol.2015.07.005. DOI
Simeonova K. Policies and measures to address climate change in Central and Eastern European Countries. Appl. Energ. 1997;56:445–461. doi: 10.1016/S0306-2619(97)00023-8. DOI
Grove SJ. Saproxylic insect ecology and the sustainable management of forests. Annu. Rev. Ecol. Syst. 2002;33:1–23. doi: 10.1146/annurev.ecolsys.33.010802.150507. DOI
FOREST EUROPE & UNECE, FAO State. State of Europe’s Forests. Status and Trends in Sustainable Forest Management. Forest EUROPE Liaison Unit Oslo, Aas (2011).
Loskotová T, Horák J. The influence of mature oak stands and spruce plantations on soil-dwelling click beetles in lowland plantation forests. PeerJ. 2016;4:e1568. doi: 10.7717/peerj.1568. PubMed DOI PMC
Mladenović, S. et al. The effects of within stand disturbance in plantation forests indicate complex and contrasting responses among and within beetle families. Bull. Entomol. Res. 108, 750–764 (2018). PubMed
Humphrey JW, Ferris R, Jukes MR, Peace AJ. The potential contribution of conifer plantations to the UK biodiversity Action Plan. Bot. J. Scotl. 2002;54:49–62. doi: 10.1080/03746600208685028. DOI
Holuša, J. et al. Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecol. Manage., 427, 434–445 (2018).
Fanta J. Krkonošský národní park 50 let. Živa. 2013;4:157–159.
Bauhus J, Puettmann K, Messier C. Silviculture for old-growth attributes. Forest Ecol. Manage. 2009;258:525–537. doi: 10.1016/j.foreco.2009.01.053. DOI
Parviainen, J. & Schuck, A. Maintenance, conservation and appropriate enhancement of biological diversity in forest ecosystems. In state of Europe’s forests 2011 status and trends in sustainable forest management in Europe (eds FOREST EUROPE & UNECE, FAO State) 65–97, (2011).
Ohlson M, Söderström L, Hörnberg G, Zackrisson O, Hermansson J. Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biol. Conserv. 1997;81:221–231. doi: 10.1016/S0006-3207(97)00001-3. DOI
Paillet Y, et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 2010;24:101–112. doi: 10.1111/j.1523-1739.2009.01399.x. PubMed DOI
Jakub H., et al. Green desert?: Biodiversity patterns in forest plantations. Forest Ecology and Management433, 343–348 (2019).
Niemelä J, Koivula M, Kotze DJ. The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J. Insect Conserv. 2007;11:5–18. doi: 10.1007/s10841-006-9014-0. DOI
Uliczka H, Angelstam P. Occurrence of epiphytic macrolichens in relation to tree species and age in managed boreal forest. Ecography. 1999;22:396–405. doi: 10.1111/j.1600-0587.1999.tb00576.x. DOI
Horák J. Insect ecology and veteran trees. J. Insect Conserv. 2017;21:1–5. doi: 10.1007/s10841-017-9953-7. DOI
Horák J, et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. Forest Ecol. Manage. 2014;315:80–85. doi: 10.1016/j.foreco.2013.12.018. DOI
Esseen PA, Renhorn KE, Pettersson RB. Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecol. Appl. 1996;6:228–238. doi: 10.2307/2269566. DOI
Gauslaa Y, Solhaug KA. Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct. Ecol. 1996;10:344–354. doi: 10.2307/2390282. DOI
Dittrich S, Jacob M, Bade C, Leuschner C, Hauck M. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol. 2014;215:1123–1137. doi: 10.1007/s11258-014-0371-6. DOI
Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (eds Stokland, J. N., Siitonen, J. & Jonsson, B. G.) (Cambridge, Cambridge University Press, 2012).
Moning C, et al. Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecol. Manage. 2009;258:745–751. doi: 10.1016/j.foreco.2009.05.015. DOI
Gibb H, et al. Effects of management on coarse woody debris volume and composition in boreal forests in northern Sweden. Scand. J. Forest Res. 2005;20:213–222. doi: 10.1080/02827580510008392. DOI
Hilszczański J, Gibb H, Bystrowski C. Insect natural enemies of Ips typographus (L.)(Coleoptera, Scolytinae) in managed and unmanaged stands of mixed lowland forest in Poland. J. Pest. Sci. 2007;80:99–107. doi: 10.1007/s10340-006-0160-7. DOI
Brunet J, Fritz O, Richnau G. Biodiversity in European beech forests – a review with recommendations for sustainable forest management. Ecol. Bull. 2010;53:77–94.
Uliczka H, Angelstam P. Assessing conservation values of forest stands based on specialised lichens and birds. Biol. Conserv. 2000;95:343–351. doi: 10.1016/S0006-3207(00)00022-7. DOI
Flousek, J., Hartmanová, O., Štursa, J. & Potocki, J. Krkonoše, příroda, historie, život. Miloš Uhlíř – Baset, Praha (2007).
Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 2002;157:331–341. doi: 10.1016/S0304-3800(02)00203-X. DOI
Horák J. Response of saproxylic beetles to tree species composition in a secondary urban forest area. Urban For. Urban Gree. 2011;10:213–222. doi: 10.1016/j.ufug.2011.04.002. DOI
Bässler C, et al. Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol. Indic. 2010;10:341–352. doi: 10.1016/j.ecolind.2009.06.014. DOI
Horák J, Kout J, Vodka Š, Donato DC. Dead wood dependent organisms in one of the oldest protected forests of Europe: investigating the contrasting effects of within-stand variation in a highly diversified environment. Forest Ecol. Manage. 2016;363:229–236. doi: 10.1016/j.foreco.2015.12.041. DOI
Seibold S, et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 2016;53:934–943. doi: 10.1111/1365-2664.12607. DOI
Horak J, Pavlicek J. Tree level indicators of species composition of saproxylic beetles in old-growth mountainous spruce–beech forest through variation partitioning. J. Insect Conserv. 2013;17:1003–1009. doi: 10.1007/s10841-013-9583-7. DOI
Buse J, Entling MH, Ranius T, Assmann T. Response of saproxylic beetles to small-scale habitat connectivity depends on trophic levels. Landscape Ecol. 2016;31:939–949. doi: 10.1007/s10980-015-0309-y. DOI
Horák J, Vodka Š, Pavlíček J, Boža P. Unexpected visitors: flightless beetles in window traps. J. Insect Conserv. 2013;17:441–449. doi: 10.1007/s10841-012-9526-8. DOI
Fritz Ö, Niklasson M, Churski M. Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl. Veget. Sci. 2009;12:93–106. doi: 10.1111/j.1654-109X.2009.01007.x. DOI
Moning C, Müller J. Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol. Indic. 2009;9:922–932. doi: 10.1016/j.ecolind.2008.11.002. DOI
Horák J. Threatened or harmful? Opportunism across spatial scales apparently leads to success during extralimital colonisation. Insect Conserv. Divers. 2016;9:351–357. doi: 10.1111/icad.12174. DOI
Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur. J. Forest Res. 2010;129:981–992. doi: 10.1007/s10342-010-0400-5. DOI
Müller J, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography. 2015;38:499–509. doi: 10.1111/ecog.00908. DOI
Ge ZM, et al. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Tree Physiol. 2011;31:323–338. doi: 10.1093/treephys/tpr001. PubMed DOI
Röder J, et al. Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient. Forest Ecol. Manage. 2010;259:1513–1521. doi: 10.1016/j.foreco.2010.01.027. DOI
Ge ZM, Kellomäki S, Peltola H, Zhou X, Väisänen H. Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Clim. Change. 2013;118:275–289. doi: 10.1007/s10584-012-0656-5. DOI
Hlásny T, Holuša J, Štěpánek P, Turčáni M, Polčák N. Expected impacts of climate change on forests: Czech Republic as a case study. J. Forest Sci. 2011;57:422–431. doi: 10.17221/103/2010-JFS. DOI
Buse J. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 2012;16:93–102. doi: 10.1007/s10841-011-9396-5. DOI
Bobiec, A., Gutowski, J. M., Zub, K., Pawlaczyk, P. & Laudenslayer, W. F. The Afterlife of a Tree (Poland, Warszawa, World Wildlife Fund, 2005).