MLPA is a practical and complementary alternative to CMA for diagnostic testing in patients with autism spectrum disorders and identifying new candidate CNVs associated with autism
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
30647996
PubMed Central
PMC6330045
DOI
10.7717/peerj.6183
PII: 6183
Knihovny.cz E-zdroje
- Klíčová slova
- Autism spectrum disorders, Chromosomal microarray analysis, Copy number variants, DOCK8, Multiplex ligation-dependent probe amplification,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Autism spectrum disorder (ASD) is a complex heterogeneous developmental disease with a significant genetic background that is frequently caused by rare copy number variants (CNVs). Microarray-based whole-genome approaches for CNV detection are widely accepted. However, the clinical significance of most CNV is poorly understood, so results obtained using such methods are sometimes ambiguous. We therefore evaluated a targeted approach based on multiplex ligation-dependent probe amplification (MLPA) using selected probemixes to detect clinically relevant variants for diagnostic testing of ASD patients. We compare the reliability and efficiency of this test to those of chromosomal microarray analysis (CMA) and other tests available to our laboratory. In addition, we identify new candidate genes for ASD identified in a cohort of ASD-diagnosed patients. METHOD: We describe the use of MLPA, CMA, and karyotyping to detect CNV in 92 ASD patients and evaluate their clinical significance. RESULT: Pathogenic and likely pathogenic mutations were identified by CMA in eight (8.07% of the studied cohort) and 12 (13.04%) ASD patients, respectively, and in eight (8.07%) and four (4.35%) patients, respectively, by MLPA. The detected mutations include the 22q13.3 deletion, which was attributed to ring chromosome 22 formation based on karyotyping. CMA revealed a total of 91 rare CNV in 55 patients: eight pathogenic, 15 designated variants of unknown significance (VOUS)-likely pathogenic, 10 VOUS-uncertain, and 58 VOUS-likely benign or benign. MLPA revealed 18 CNV in 18 individuals: eight pathogenic, four designated as VOUS-likely pathogenic, and six designated as VOUS-likely benign/benign. Rare CNVs were detected in 17 (58.62%) out of 29 females and 38 (60.32%) out of 63 males in the cohort. Two genes, DOCK8 and PARK2, were found to be overlapped by CNV designated pathogenic, VOUS-likely pathogenic, or VOUS-uncertain in multiple patients. Moreover, the studied ASD cohort exhibited significant (p < 0.05) enrichment of duplications encompassing DOCK8. CONCLUSION: Multiplex ligation-dependent probe amplification and CMA yielded concordant results for 12 patients bearing CNV designated pathogenic or VOUS-likely pathogenic. Unambiguous diagnoses were achieved for eight patients (corresponding to 8.7% of the total studied population) by both MLPA and CMA, for one (1.09%) patient by karyotyping, and for one (1.09%) patient by FRAXA testing. MLPA and CMA thus achieved identical reliability with respect to clinically relevant findings. As such, MLPA could be useful as a fast and inexpensive test in patients with syndromic autism. The detection rate of potentially pathogenic variants (VOUS-likely pathogenic) achieved by CMA was higher than that for MLPA (13.04% vs. 4.35%). However, there was no corresponding difference in the rate of unambiguous diagnoses of ASD patients. In addition, the results obtained suggest that DOCK8 may play a role in the etiology of ASD.
Department of Medical Genetics University Hospital Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Anderson BM, Schnetz-Boutaud NC, Bartlett J, Wotawa AM, Wright HH, Abramson RK, Cuccaro ML, Gilbert JR, Pericak-Vance MA, Haines JL. Examination of association of genes in the serotonin system to autism. Neurogenetics. 2009;10:209–216. doi: 10.1007/s10048-009-0171-7. PubMed DOI PMC
Bacchelli E, Ceroni F, Pinto D, Lomartire S, Giannandrea M, D’Adamo P, Bonora E, Parchi P, Tancredi R, Battaglia A, Maestrini E. A CTNNA3 compound heterozygous deletion implicates a role for αT-catenin in susceptibility to autism spectrum disorder. Journal of Neurodevelopmental Disorders. 2014;6:17. doi: 10.1186/1866-1955-6-17. PubMed DOI PMC
Bremer A, Giacobini MB, Eriksson M, Gustavsson P, Nordin V, Fernell E, Gillberg C, Nordgren A, Uppströmer Å, Anderlid B-M, Nordenskjöld M, Schoumans J. Copy number variation characteristics in subpopulations of patients with autism spectrum disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2011;156:115–124. doi: 10.1002/ajmg.b.31142. PubMed DOI
Burnside RD. 22q11.21 deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cytogenetic and Genome Research. 2015;146:89–99. doi: 10.1159/000438708. PubMed DOI
Cai G, Edelmann L, Goldsmith JE, Cohen N, Nakamine A, Reichert JG, Hoffman EJ, Zurawiecki DM, Silverman JM, Hollander E, Soorya L, Anagnostou E, Betancur C, Buxbaum JD. Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Medical Genomics. 2008;1:50. doi: 10.1186/1755-8794-1-50. PubMed DOI PMC
Cappuccio G, Vitiello F, Casertano A, Fontana P, Genesio R, Bruzzese D, Ginocchio VM, Mormile A, Nitsch L, Andria G, Melis D. New insights in the interpretation of array-CGH: autism spectrum disorder and positive family history for intellectual disability predict the detection of pathogenic variants. Italian Journal of Pediatrics. 2016;42:39. doi: 10.1186/s13052-016-0246-7. PubMed DOI PMC
De La Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine. 2016;22:345–361. doi: 10.1038/nm.4071. PubMed DOI PMC
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni M-C, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics. 2007;39:25–27. doi: 10.1038/ng1933. PubMed DOI PMC
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM, Carver NP. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. American Journal of Human Genetics. 2009;84:524–533. doi: 10.1016/j.ajhg.2009.03.010. PubMed DOI PMC
Folmsbee SS, Wilcox DR, Tyberghein K, De Bleser P, Tourtellotte WG, Van Hengel J, Van Roy F, Gottardi CJ. ΑT-catenin in restricted brain cell types and its potential connection to autism. Journal of Molecular Psychiatry. 2016;4:2. doi: 10.1186/s40303-016-0017-9. PubMed DOI PMC
Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. European Journal of Cell Biology. 2014;93:466–477. doi: 10.1016/j.ejcb.2014.06.003. PubMed DOI
Glessner JT, Li J, Wang D, March M, Lima L, Desai A, Hadley D, Kao C, Gur RE, Cohen N, Sleiman PMA, Li Q, Hakonarson H. Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Medicine. 2017;9:106. doi: 10.1186/s13073-017-0494-1. PubMed DOI PMC
Griggs BL, Ladd S, Saul RA, DuPont BR, Srivastava AK. Dedicator of cytokinesis 8 is disrupted in two patients with mental retardation and developmental disabilities. Genomics. 2008;1:195–202. doi: 10.1016/j.ygeno.2007.10.011. PubMed DOI PMC
Guo H, Peng Y, Hu Z, Li Y, Xun G, Ou J, Sun L, Xiong Z, Liu Y, Wang T, Chen J, Xia L, Bai T, Shen Y, Tian Q, Hu Y, Shen L, Zhao R, Zhang X, Zhang F, Zhao J, Zou X, Xia K. Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort. Scientific Reports. 2017;7:44155. doi: 10.1038/srep44155. PubMed DOI PMC
ISCA 2013. http://dbsearch.clinicalgenome.org/search/ [21 January 2017]. http://dbsearch.clinicalgenome.org/search/
Jonsson L, Ljunggren E, Bremer A, Pedersen C, Landén M, Thuresson K, Giacobini MB, Melke J. Mutation screening of melatonin-related genes in patients with autism spectrum disorders. BMC Medical Genomics. 2010;3:10. doi: 10.1186/1755-8794-3-10. PubMed DOI PMC
Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genetics in Medicine. 2011;13:680–685. doi: 10.1097/GIM.0b013e3182217a3a. PubMed DOI
Krgovic D, Kokalj Vokac N, Zagorac A, Gregoric Kumperscak H. Rare structural variants in the DOCK8 gene identified in a cohort of 439 patients with neurodevelopmental disorders. Scientific Reports. 2018;8:9449. doi: 10.1038/s41598-018-27824-0. PubMed DOI PMC
Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, Raja A, Coe BP, Stessman HA, He Z-X, Leal SM, Bernier R, Eichler EE. Excess of rare, inherited truncating mutations in autism. Nature Genetics. 2015;47:582–588. doi: 10.1038/ng.3303. PubMed DOI PMC
Leppa VM, Kravitz SN, Martin CL, Andrieux J, Le Caignec C, Martin-Coignard D, DyBuncio C, Sanders SJ, Lowe JK, Cantor RM, Geschwind DH. Rare inherited and De Novo CNVs reveal complex contributions to ASD risk in multiplex families. American Journal of Human Genetics. 2016;99:540–554. doi: 10.1016/j.ajhg.2016.06.036. PubMed DOI PMC
McCarthy M. Autism diagnoses in the US rise by 30%, CDC reports. BMJ. 2014;348:g2520. doi: 10.1136/bmj.g2520. PubMed DOI
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics. 2010;86:749–764. doi: 10.1016/j.ajhg.2010.04.006. PubMed DOI PMC
Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HYK, Leng J, Li R, Li Y, Lin C-Y, Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X, Stromberg MP, Stütz AM, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Snyder M, Wang J, Ye K, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65. doi: 10.1038/nature09708. PubMed DOI PMC
Nava C, Keren B, Mignot C, Rastetter A, Chantot-Bastaraud S, Faudet A, Fonteneau E, Amiet C, Laurent C, Jacquette A, Whalen S, Afenjar A, Périsse D, Doummar D, Dorison N, Leboyer M, Siffroi J-P, Cohen D, Brice A, Héron D, Depienne C. Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders. European Journal of Human Genetics. 2013;22:71–78. doi: 10.1038/ejhg.2013.88. PubMed DOI PMC
Nemirovsky SI, Córdoba M, Zaiat JJ, Completa SP, Vega PA, González-Morón D, Medina NM, Fabbro M, Romero S, Brun B, Revale S, Ogara MF, Pecci A, Marti M, Vazquez M, Turjanski A, Kauffman MA, Hu VW. Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder. PLOS ONE. 2015;10:e0116358. doi: 10.1371/journal.pone.0116358. PubMed DOI PMC
Schaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine. 2013;15:399–407. doi: 10.1038/gim.2013.32. PubMed DOI
Schaefer G. Clinical genetic aspects of autism spectrum disorders. International Journal of Molecular Sciences. 2016;17:180. doi: 10.3390/ijms17020180. PubMed DOI PMC
Scheuerle A, Wilson K. PARK2 copy number aberrations in two children presenting with autism spectrum disorder: further support of an association and possible evidence for a new microdeletion/microduplication syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2011;156:413–420. doi: 10.1002/ajmg.b.31176. PubMed DOI
Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, Miller KJ, Frazier JA, Silverstein I, Picker J, Weissman L, Raffalli P, Jeste S, Demmer LA, Peters HK, Brewster SJ, Kowalczyk SJ, Rosen-Sheidley B, McGowan C, Duda AW, Lincoln SA, Lowe KR, Schonwald A, Robbins M, Hisama F, Wolff R, Becker R, Nasir R, Urion DK, Milunsky JM, Rappaport L, Gusella JF, Walsh CA, Wu B-L, Miller DT. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 2010;125:e727–e735. doi: 10.1542/peds.2009-1684. PubMed DOI PMC
Shi L. Dock protein family in brain development and neurological disease. Communicative & Integrative Biology. 2014;6:e26839. doi: 10.4161/cib.26839. PubMed DOI
Solomon NM. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. Journal of Medical Genetics. 2004;41:669–678. doi: 10.1136/jmg.2003.016949. PubMed DOI PMC
South ST, Lee C, Lamb AN, Higgins AW, Kearney HM. ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genetics in Medicine. 2013;15:901–909. doi: 10.1038/gim.2013.129. PubMed DOI
Stankiewicz P, Thiele H, Schlicker M, Cseke-Friedrich A, Bartel-Friedrich S, Yatsenko SA, Lupski JR, Hansmann I. Duplication of Xq26.2-q27.1, includingSOX3, in a mother and daughter with short stature and dyslalia. American Journal of Medical Genetics Part A. 2005;138A:11–17. doi: 10.1002/ajmg.a.30910. PubMed DOI
Starkstein S, Gellar S, Parlier M, Payne L, Piven J. High rates of parkinsonism in adults with autism. Journal of Neurodevelopmental Disorders. 2015;7:29. doi: 10.1186/s11689-015-9125-6. PubMed DOI PMC
The UniProt Consortium UniProt: the universal protein knowledgebase. 2017. www.uniprot.org. [21 January 2017]. www.uniprot.org PubMed PMC
Wang J-C, Mahon LW, Ross LP, Anguiano A, Owen R, Boyar FZ. Enrichment of small pathogenic deletions at chromosome 9p24.3 and 9q34.3 involving DOCK8, KANK1, EHMT1 genes identified by using high-resolution oligonucleotide-single nucleotide polymorphism array analysis. Molecular Cytogenetics. 2016;9:82. doi: 10.1186/s13039-016-0291-3. PubMed DOI PMC
Yin C-L, Chen H-I, Li L-H, Chien Y-L, Liao H-M, Chou MC, Chou W-J, Tsai W-C, Chiu Y-N, Wu Y-Y, Lo C-Z, Wu J-Y, Chen Y-T, Gau SS-F. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Molecular Autism. 2016;7:23. doi: 10.1186/s13229-016-0087-7. PubMed DOI PMC
Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, Matthews HF, Davis J, Turner ML, Uzel G, Holland SM, Su HC. Combined immunodeficiency associated with DOCK8 mutations. New England Journal of Medicine. 2009;361:2046–2055. doi: 10.1056/NEJMoa0905506. PubMed DOI PMC
Zhou Y. Simplified molecular diagnosis of fragile X syndrome by fluorescent methylation-specific PCR and genescan analysis. Clinical Chemistry. 2006;52:1492–1500. doi: 10.1373/clinchem.2006.068593. PubMed DOI
Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. American Journal of Human Genetics. 2011;89:168–175. doi: 10.1016/j.ajhg.2011.06.008. PubMed DOI PMC
figshare
10.6084/m9.figshare.6236648.v1