Preserved Expression of Skin Neurotrophic Factors in Advanced Diabetic Neuropathy Does Not Lead to Neural Regeneration despite Pancreas and Kidney Transplantation
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30648113
PubMed Central
PMC6311823
DOI
10.1155/2018/2309108
Knihovny.cz E-resources
- MeSH
- Diabetic Neuropathies metabolism MeSH
- Adult MeSH
- Skin innervation metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Nerve Fibers metabolism MeSH
- Neural Conduction physiology MeSH
- Nerve Growth Factors metabolism MeSH
- Nerve Regeneration physiology MeSH
- Kidney Transplantation * MeSH
- Pancreas Transplantation * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nerve Growth Factors MeSH
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes with potential severe consequences. Its pathogenesis involves hyperglycemia-linked mechanisms, which may include changes in the expression of neurotrophic growth factors. We analyzed the expression of 29 factors potentially related to nerve degeneration and regeneration in skin biopsies from 13 type 1 diabetic pancreas and kidney recipients with severe DPN including severe depletion of intraepidermal nerve fibers (IENF) in lower limb skin biopsies (group Tx1 1st examination). The investigation was repeated after a median 28-month period of normoglycemia achieved by pancreas transplantation (group Tx1 2nd examination). The same tests were performed in 13 stable normoglycemic pancreas and kidney recipients 6-12 years posttransplantation (group Tx2), in 12 matched healthy controls (group HC), and in 12 type 1 diabetic subjects without severe DPN (group DM). Compared to DM and HC groups, we found a significantly higher (p < 0.05-0.001) expression of NGF (nerve growth factor), NGFR (NGF receptor), NTRK1 (neurotrophic receptor tyrosine kinase 1), GDNF (glial cell-derived neurotrophic factor), GFRA1 (GDNF family receptor alpha 1), and GFAP (glial fibrillary acidic protein) in both transplant groups (Tx1 and Tx2). Enhanced expression of these factors was not normalized following the median 28-month period of normoglycemia (Tx1 2nd examination) and negatively correlated with IENF density and with electrophysiological indices of DPN (vibration perception threshold, electromyography, and autonomic tests). In contrast to our expectation, the expression of most of 29 selected factors related to neural regeneration was comparable in subjects with severe peripheral nerve fiber depletion and healthy controls and the expression of six factors was significantly upregulated. These findings may be important for better understanding the pathophysiology of nerve regeneration and for the development of intervention strategies.
Diabetes Center Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
University Hospital of Würzburg Department of Neurology 97080 Würzburg Germany
See more in PubMed
Tesfaye S., Boulton A. J. M., Dyck P. J., et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–2293. doi: 10.2337/dc10-1303. PubMed DOI PMC
Tomlinson D. R., Gardiner N. J. Diabetic neuropathies: components of etiology. Journal of the Peripheral Nervous System. 2008;13(2):112–121. doi: 10.1111/j.1529-8027.2008.00167.x. PubMed DOI
Leinninger G. M., Vincent A. M., Feldman E. L. The role of growth factors in diabetic peripheral neuropathy. Journal of the Peripheral Nervous System. 2004;9(1):26–53. doi: 10.1111/j.1085-9489.2004.09105.x. PubMed DOI
Vincent A. M., Callaghan B. C., Smith A. L., Feldman E. L. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nature Reviews Neurology. 2011;7(10):573–583. doi: 10.1038/nrneurol.2011.137. PubMed DOI
Boulton A. J. M., Kempler P., Ametov A., Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes/Metabolism Research and Reviews. 2013;29(5):327–333. doi: 10.1002/dmrr.2397. PubMed DOI
Kennedy W. R., Navarro X., Sutherland D. E. R. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology. 1995;45(4):773–780. doi: 10.1212/WNL.45.4.773. PubMed DOI
Lauria G., Devigili G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nature Clinical Practice Neurology. 2007;3(10):546–557. doi: 10.1038/ncpneuro0630. PubMed DOI
Uceyler N., Riediger N., Kafke W., Sommer C. Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies. Journal of Neurology. 2015;262(1):203–212. doi: 10.1007/s00415-014-7556-8. PubMed DOI
Anand P., Terenghi G., Warner G., Kopelman P., Williams-Chestnut R. E., Sinicropi D. V. The role of endogenous nerve growth factor in human diabetic neuropathy. Nature Medicine. 1996;2(6):703–707. doi: 10.1038/nm0696-703. PubMed DOI
Yasuda H., Terada M., Maeda K., et al. Diabetic neuropathy and nerve regeneration. Progress in Neurobiology. 2003;69(4):229–285. doi: 10.1016/S0301-0082(03)00034-0. PubMed DOI
Boucek P., Havrdova T., Voska L., et al. Epidermal innervation in type 1 diabetic patients: a 2.5-year prospective study after simultaneous pancreas/kidney transplantation. Diabetes Care. 2008;31(8):1611–1612. doi: 10.2337/dc07-2409. PubMed DOI PMC
Havrdova T., Boucek P., Saudek F., et al. Severe epidermal nerve fiber loss in diabetic neuropathy is not reversed by long-term normoglycemia after simultaneous pancreas and kidney transplantation. American Journal of Transplantation. 2016;16(7):2196–2201. doi: 10.1111/ajt.13715. PubMed DOI
Meijer J. W. G., Smit A. J., Sonderen E. V., Groothoff J. W., Eisma W. H., Links T. P. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: the diabetic neuropathy symptom score. Diabetic Medicine. 2002;19(11):962–965. doi: 10.1046/j.1464-5491.2002.00819.x. PubMed DOI
Lindsay R. M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. The Journal of Neuroscience. 1988;8(7):2394–2405. doi: 10.1523/JNEUROSCI.08-07-02394.1988. PubMed DOI PMC
Mitsukawa K., Lu X., Bartfai T. Galanin, galanin receptors and drug targets. Cellular and Molecular Life Sciences. 2008;65(12):1796–1805. doi: 10.1007/s00018-008-8153-8. PubMed DOI PMC
Höke A., Gordon T., Zochodne D. W., Sulaiman O. A. R. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Experimental Neurology. 2002;173(1):77–85. doi: 10.1006/exnr.2001.7826. PubMed DOI
Diemel L. T., Cai F., Anand P., et al. Increased nerve growth factor mRNA in lateral calf skin biopsies from diabetic patients. Diabetic Medicine. 1999;16(2):113–119. doi: 10.1046/j.1464-5491.1999.00035.x. PubMed DOI
Pittenger G., Vinik A. Nerve growth factor and diabetic neuropathy. Experimental Diabesity Research. 2003;4(4):271–285. doi: 10.1155/EDR.2003.271. PubMed DOI PMC
Verge V. M. K., Andreassen C. S., Arnason T. G., Andersen H. Mechanisms of disease: role of neurotrophins in diabetes and diabetic neuropathy. Handbook of Clinical Neurology. 2014;126:443–460. doi: 10.1016/B978-0-444-53480-4.00032-1. PubMed DOI
Tan W., Rouen S., Barkus K. M., et al. Nerve growth factor blocks the glucose-induced down-regulation of caveolin-1 expression in Schwann cells via p75 neurotrophin receptor signaling. The Journal of Biological Chemistry. 2003;278(25):23151–23162. doi: 10.1074/jbc.M212986200. PubMed DOI
Dobrowsky R. T., Rouen S., Yu C. Altered neurotrophism in diabetic neuropathy: spelunking the caves of peripheral nerve. The Journal of Pharmacology and Experimental Therapeutics. 2005;313(2):485–491. doi: 10.1124/jpet.104.079921. PubMed DOI
Fu A. K. Y., Ip F. C. F., Lai K. O., Tsim K. W. K., Ip N. Y. Muscle-derived neurotrophin-3 increases the aggregation of acetylcholine receptors in neuron-muscle co-cultures. Neuroreport. 1997;8(18):3895–3900. doi: 10.1097/00001756-199712220-00011. PubMed DOI
Fallon J., Reid S., Kinyamu R., et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(26):14686–14691. doi: 10.1073/pnas.97.26.14686. PubMed DOI PMC
Magnussen C., Hung S. P., Ribeiro-da-Silva A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat model of neuropathic pain. Molecular Pain. 2015;11:p. 31. doi: 10.1186/s12990-015-0029-y. PubMed DOI PMC
Conti A. M., Scarpini E., Malosio M. L., et al. In situ hybridization study of myelin protein mRNA in rats with an experimental diabetic neuropathy. Neuroscience Letters. 1996;207(1):65–69. doi: 10.1016/0304-3940(96)12490-3. PubMed DOI
Vincent A. M., Feldman E. L. New insights into the mechanisms of diabetic neuropathy. Reviews in Endocrine & Metabolic Disorders. 2004;5(3):227–236. doi: 10.1023/B:REMD.0000032411.11422.e0. PubMed DOI
Furusho M., Dupree J. L., Bryant M., Bansal R. Disruption of fibroblast growth factor receptor signaling in nonmyelinating Schwann cells causes sensory axonal neuropathy and impairment of thermal pain sensitivity. The Journal of Neuroscience. 2009;29(6):1608–1614. doi: 10.1523/JNEUROSCI.5615-08.2009. PubMed DOI PMC
Anand P. Neurotrophic factors and their receptors in human sensory neuropathies. Progress in Brain Research. 2004;146:477–492. doi: 10.1016/S0079-6123(03)46030-5. PubMed DOI
Li H., Terenghi G., Hall S. M. Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia. 1997;20(4):333–347. doi: 10.1002/(SICI)1098-1136(199708)20:4<333::AID-GLIA6>3.0.CO;2-6. PubMed DOI
Brewster W. J., Fernyhough P., Diemel L. T., Mohiuddin L., Tomlinson D. R. Diabetic neuropathy, nerve growth factor and other neurotrophic factors. Trends in Neurosciences. 1994;17(8):321–325. doi: 10.1016/0166-2236(94)90169-4. PubMed DOI
Aloe L., Rocco M. L., Balzamino B. O., Micera A. Nerve growth factor: a focus on neuroscience and therapy. Current Neuropharmacology. 2015;13(3):294–303. doi: 10.2174/1570159X13666150403231920. PubMed DOI PMC
Kennedy A. J., Wellmer A., Facer P., et al. Neurotrophin-3 is increased in skin in human diabetic neuropathy. Journal of Neurology, Neurosurgery, and Psychiatry. 1998;65(3):393–395. doi: 10.1136/jnnp.65.3.393. PubMed DOI PMC
Terenghi G., Mann D., Kopelman P. G., Anand P. trkA and trkC expression is increased in human diabetic skin. Neuroscience Letters. 1997;228(1):33–36. doi: 10.1016/S0304-3940(97)00350-9. PubMed DOI
Terada M., Yasuda H., Amenomori M., Joko M., Kikkawa R., Shigeta Y. Abnormal intramuscular nerve sprouting after partial denervation in streptozotocin-induced diabetic rats. International Congress Series. 1995;1084:203–207.
Hur J., Sullivan K. A., Pande M., et al. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain. 2011;134(11):3222–3235. doi: 10.1093/brain/awr228. PubMed DOI PMC
Hur J., Sullivan K. A., Callaghan B. C., Pop-Busui R., Feldman E. L. Identification of factors associated with sural nerve regeneration and degeneration in diabetic neuropathy. Diabetes Care. 2013;36(12):4043–4049. doi: 10.2337/dc12-2530. PubMed DOI PMC
Solders G., Tyden G., Persson A., Groth C. G. Improvement of nerve conduction in diabetic neuropathy. A follow-up study 4 yr after combined pancreatic and renal transplantation. Diabetes. 1992;41(8):946–951. doi: 10.2337/diab.41.8.946. PubMed DOI
Navarro X., Sutherland D. E. R., Kennedy W. R. Long-term effects of pancreatic transplantation on diabetic neuropathy. Annals of Neurology. 1997;42(5):727–736. doi: 10.1002/ana.410420509. PubMed DOI
Allen R. D. M., al-Harbi I. S., Morris J. G. L., et al. Diabetic neuropathy after pancreas transplantation: determinants of recovery. Transplantation. 1997;63(6):830–838. doi: 10.1097/00007890-199703270-00007. PubMed DOI
Boucek P. Advanced diabetic neuropathy: a point of no return? The Review of Diabetic Studies. 2006;3(3):143–150. doi: 10.1900/RDS.2006.3.143. PubMed DOI PMC
Smith A. G., Russell J., Feldman E. L., et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29(6):1294–1299. doi: 10.2337/dc06-0224. PubMed DOI
Boyd A. L., Barlow P. M., Pittenger G. L., Simmons K. F., Vinik A. I. Topiramate improves neurovascular function, epidermal nerve fiber morphology, and metabolism in patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2010;3:431–437. doi: 10.2147/DMSO.S13699. PubMed DOI PMC
Tavakoli M., Mitu-Pretorian M., Petropoulos I. N., et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62(1):254–260. doi: 10.2337/db12-0574. PubMed DOI PMC
Shtein R. M., Callaghan B. C. Corneal confocal microscopy as a measure of diabetic neuropathy. Diabetes. 2013;62(1):25–26. doi: 10.2337/db12-1114. PubMed DOI PMC
Kasayama S., Oka T. Impaired production of nerve growth factor in the submandibular gland of diabetic mice. The American Journal of Physiology. 1989;257, 3 Part 1:E400–E404. doi: 10.1152/ajpendo.1989.257.3.E400. PubMed DOI
Fernyhough P., Diemel L. T., Brewster W. J., Tomlinson D. R. Deficits in sciatic nerve neuropeptide content coincide with a reduction in target tissue nerve growth factor messenger RNA in streptozotocin-diabetic rats: effects of insulin treatment. Neuroscience. 1994;62(2):337–344. doi: 10.1016/0306-4522(94)90368-9. PubMed DOI
Ordonez G., Fernandez A., Perez R., Sotelo J. Low contents of nerve growth factor in serum and submaxillary gland of diabetic mice. A possible etiological element of diabetic neuropathy. Journal of the Neurological Sciences. 1994;121(2):163–166. doi: 10.1016/0022-510X(94)90346-8. PubMed DOI
Hellweg R., Raivich G., Hartung H. D., Hock C., Kreutzberg G. W. Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Experimental Neurology. 1994;130(1):24–30. doi: 10.1006/exnr.1994.1181. PubMed DOI