Dual role of iodine, silver, chlorhexidine and octenidine as antimicrobial and antiprotease agents
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30703114
PubMed Central
PMC6355201
DOI
10.1371/journal.pone.0211055
PII: PONE-D-18-19018
Knihovny.cz E-zdroje
- MeSH
- antiinfekční látky farmakologie MeSH
- Bacteria růst a vývoj MeSH
- bakteriální nemoci kůže * farmakoterapie enzymologie mikrobiologie MeSH
- chlorhexidin farmakologie MeSH
- hojení ran účinky léků MeSH
- iminy MeSH
- infekce v ráně * farmakoterapie enzymologie mikrobiologie MeSH
- inhibitory proteas farmakologie MeSH
- jod farmakologie MeSH
- lidé MeSH
- prasata MeSH
- pyridiny farmakologie MeSH
- stříbro farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiinfekční látky MeSH
- chlorhexidin MeSH
- iminy MeSH
- inhibitory proteas MeSH
- jod MeSH
- octenidine MeSH Prohlížeč
- pyridiny MeSH
- stříbro MeSH
OBJECTIVES: The majority of human chronic wounds contain bacterial biofilms, which produce proteases and retard the resolution of inflammation. This in turn leads to elevated patient protease activity. Chronic wounds progressing towards closure show a reduction in proteolytic degradation. Therefore, the modulation of protease activity may lead to the faster healing of chronic wounds. Antimicrobials are used to control biofilm-based infection; however, some of them also exhibit the inhibition of matrix metalloproteinases and bacterial proteases. We investigated the antimicrobial agents used in wound healing for their potential to inhibit bacterial and host proteases relevant to chronic wounds. METHODS: Using in vitro zymography, we tested the ability of povidone-iodine, silver lactate, chlorhexidine digluconate, and octenidine hydrochloride to inhibit selected human proteases and proteases from Pseudomonas aeruginosa, Staphylococcus aureus, Serratia marcescens, and Serratia liquefaciens. We investigated penetration and skin protease inhibition by means of in situ zymography. RESULTS: All the tested antimicrobials inhibited both eukaryotic and prokaryotic proteases in a dose-dependent manner in vitro. The tested compounds were also able to penetrate into skin ex vivo and inhibit the resident proteases. Silver lactate and chlorhexidine digluconate showed an inhibitory effect ex vivo even in partial contact with skin in Franz diffusion cells. CONCLUSIONS: Our in vitro and ex vivo results suggest that wound healing devices which contain iodine, silver, chlorhexidine, and octenidine may add value to the antibacterial effect and also aid in chronic wound healing. Antiprotease effects should be considered in the design of future antimicrobial wound healing devices.
Cell Physiology Research Group Contipro Dolní Dobrouč Czech Republic
Institute of Dermatology 3rd Medical Faculty Charles University Prague Prague Czech Republic
Institute of Microbiology Faculty of Medicine Slovak Medical University Bratislava Slovakia
Zobrazit více v PubMed
Rayment EA, Upton Z, Shooter GK. Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. British Journal of Dermatology. 2008;158: 951–961. 10.1111/j.1365-2133.2008.08462.x PubMed DOI
McCarty SM, Percival SL. Proteases and Delayed Wound Healing. Adv Wound Care (New Rochelle). 2013;2: 438–447. 10.1089/wound.2012.0370 PubMed DOI PMC
McCarty SM, Percival SL, Clegg PD, Cochrane CA. The role of polyphosphates in the sequestration of matrix metalloproteinases. Int Wound J. 2015;12: 89–99. 10.1111/iwj.12058 PubMed DOI PMC
Kloeters O, Unglaub F, de Laat E, van Abeelen M, Ulrich D. Prospective and randomised evaluation of the protease-modulating effect of oxidised regenerated cellulose/collagen matrix treatment in pressure sore ulcers. Int Wound J. 2016;13: 1231–1236. 10.1111/iwj.12449 PubMed DOI PMC
Eming SA, Smola-Hess S, Kurschat P, Hirche D, Krieg T, Smola H. A novel property of povidon-iodine: inhibition of excessive protease levels in chronic non-healing wounds. J Invest Dermatol. 2006;126: 2731–2733. 10.1038/sj.jid.5700474 PubMed DOI
Shi L, Ermis R, Kiedaisch B, Carson D. The effect of various wound dressings on the activity of debriding enzymes. Adv Skin Wound Care. 2010;23: 456–462. 10.1097/01.ASW.0000383224.64524.ae PubMed DOI
Beighton D, Decker J, Homer KA. Effects of chlorhexidine on proteolytic and glycosidic enzyme activities of dental plaque bacteria. J Clin Periodontol. 1991;18: 85–89. PubMed
Gendron R, Grenier D, Sorsa T, Mayrand D. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol. 1999;6: 437–439. PubMed PMC
Mei ML, Li QL, Chu CH, Yiu CKY, Lo ECM. The inhibitory effects of silver diamine fluoride at different concentrations on matrix metalloproteinases. Dent Mater. 2012;28: 903–908. 10.1016/j.dental.2012.04.011 PubMed DOI
Kucera J, Sojka M, Pavlik V, Szuszkiewicz K, Velebny V, Klein P. Multispecies biofilm in an artificial wound bed—A novel model for in vitro assessment of solid antimicrobial dressings. J Microbiol Methods. 2014;103: 18–24. 10.1016/j.mimet.2014.05.008 PubMed DOI
Toth M, Sohail A, Fridman R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol Biol. 2012;878: 121–135. 10.1007/978-1-61779-854-2_8 PubMed DOI
lukemiller.org» Blog Archive» Analyzing gels and western blots with ImageJ [Internet]. [cited 14 Dec 2018]. Available: http://lukemiller.org/index.php/2010/11/analyzing-gels-and-western-blots-with-image-j/
R Development Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2008. Available: http://www.R-project.org
Ritz C, Baty F, Streibig JC, Gerhard D. Dose-Response Analysis Using R. PLoS One. 2015;10 10.1371/journal.pone.0146021 PubMed DOI PMC
Šmejkalová D, Muthný T, Nešporová K, Hermannová M, Achbergerová E, Huerta-Angeles G, et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr Polym. 2017;156: 86–96. 10.1016/j.carbpol.2016.09.013 PubMed DOI
Hadler-Olsen E, Kanapathippillai P, Berg E, Svineng G, Winberg J-O, Uhlin-Hansen L. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity. J Histochem Cytochem. 2010;58: 29–39. 10.1369/jhc.2009.954354 PubMed DOI PMC
Ramachandran LK. Protein-Iodine Interaction. Chem Rev. 1956;56: 199–218. 10.1021/cr50008a001 DOI
Tseng K-H, Liao C-Y. Production of silver ions from colloidal silver by nanoparticle iontophoresis system. J Nanosci Nanotechnol. 2011;11: 1991–1995. PubMed
Ballinger PM, Griffin MM, Itzhaki S, Stevens FS. Evidence for the carriage of silver by sulphadimidine: inhibition of proteolytic enzymes. Br J Pharmacol. 1982;77: 147–151. PubMed PMC
Hjeljord LG, Rolla G, Bonesvoll P. Chlorhexidine-protein interactions. J Periodontal Res Suppl. 1973;12: 11–16. PubMed
Kodedová M, Sigler K, Lemire BD, Gášková D. Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. BioTechniques. 2011;50: 58–63. 10.2144/000113568 PubMed DOI
Mirastschijski U, Impola U, Jahkola T, Karlsmark T, Ågren MS, Saarialho-Kere U. Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds. Human Pathology. 2002;33: 355–364. 10.1053/hupa.2002.32221 PubMed DOI
Stahl J, Braun M, Siebert J, Kietzmann M. The percutaneous permeation of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept) through skin of different species in vitro. BMC Vet Res. 2011;7: 44 10.1186/1746-6148-7-44 PubMed DOI PMC