Photodegradation and Biodegradation of Poly(Lactic) Acid Containing Orotic Acid as a Nucleation Agent
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2018/009
Univerzita Tomáše Bati ve Zlíně
IGA/FT/2019/011
Univerzita Tomáše Bati ve Zlíně
PubMed
30720761
PubMed Central
PMC6384750
DOI
10.3390/ma12030481
PII: ma12030481
Knihovny.cz E-resources
- Keywords
- biodegradation, compost, crystallinity, orotic acid, photodegradation, poly(lactic acid),
- Publication type
- Journal Article MeSH
Orotic acid is a natural heterocyclic compound that acts as a nucleation agent in poly(lactic acid) (PLA). PLA materials with increasing orotic acid content were prepared and characterized. It was found that crystallinity of about 28% was reached with 0.3% content of the agent. Further enhancement in the content of the agent did not provoke any additional significant increase of crystallinity. Subsequently, it was investigated whether the orotic acid content affected photodegradation of PLA and, in the next phase, its biodegradation. The results of rheological measurements showed that the compound slightly accelerates photodegradation of the material, which was accompanied by the cleavage of PLA chains. Previous photodegradation was shown to accelerate the subsequent biodegradation by shortening the lag phase of the process, where the explanation is probably in the reduction of the polymer molecular weight during the photodegradation. Moreover, the presence of orotic acid in both initial and photodegraded samples was found to influence biodegradation positively by shortening the lag phase and increasing the observed maximal rate of the biodegradation.
See more in PubMed
Blanco I. Lifetime prediction of polymer: To bet, or not bet—Is This the Question? Materials. 2018;11:1383. doi: 10.3390/ma11081383. PubMed DOI PMC
Tang H., Luan Y., Yang L., Sun H. A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities. Molecules. 2018;23:2870. doi: 10.3390/molecules23112870. PubMed DOI PMC
Sun H., Kabb C.P., Sims M.B., Sumerin B.S. Architecture-transformable polymers: Reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci. 2019;89:61–75. doi: 10.1016/j.progpolymsci.2018.09.006. DOI
Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: Real chance or law reliability? Chin. J. Polym. Sci. 2014;32:681–689. doi: 10.1007/s10118-014-1453-6. DOI
Rudnik E. Compostable Polymer Materials. 1st ed. Elsevier; Amsterdam, The Netherlands: 2007.
Auras R., Harte B., Selke S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004;4:835–864. doi: 10.1002/mabi.200400043. PubMed DOI
Gregorova A., Sedlarik V., Pastorek M., Jachandra H., Stelzer F. Effect of compatibilizing agent on the properties of highly crystalline composites based on poly(lactic acid) and wood flour and/or mica. J. Polym. Environ. 2011;19:372–381. doi: 10.1007/s10924-011-0292-6. DOI
Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008;26:246–265. doi: 10.1016/j.biotechadv.2007.12.005. PubMed DOI
Nofar M., Sacligil D., Carreau P.J., Kamal M.R., Heuzey M.C. Poly(lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019;125:307–360. doi: 10.1016/j.ijbiomac.2018.12.002. PubMed DOI
Garlotta D. A Literature review of poly(Lactic Acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI
Saeidlou S., Huneault M.A., Li H., Park C.B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012;37:1657–1677. doi: 10.1016/j.progpolymsci.2012.07.005. DOI
Harris A.M., Lee E.C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008;107:2246–2255. doi: 10.1002/app.27261. DOI
Perego G., Cella G.D., Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996;59:37–43. doi: 10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N. DOI
Jiang L., Shen T., Xu P., Zhao X., Li X., Dong W., Ma P., Chen M. Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. E-Polymers. 2016;16:1–13. doi: 10.1515/epoly-2015-0179. DOI
Li H., Huneault M.A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid) Polymers. 2007;48:6855–6866. doi: 10.1016/j.polymer.2007.09.020. DOI
Ma P., Xu Y., Wang D., Dong Q., Chen M. Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents. Ind. Eng. Chem. Res. 2014;53:12888–12892. doi: 10.1021/ie502211j. DOI
Cicala G., Giordano D., Tosto C., Filippone G., Recca A., Blanco I. Polylactide (PLA) filament a biobased solution for additive manufacturing: Correlating rheology and thermomechanical properties with printing quality. Materials. 2018;11:1191. doi: 10.3390/ma11071191. PubMed DOI PMC
Nam J.Y., Okamoto M., Okamoto H., Nakano M., Usuki A., Matsuda M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymers. 2006;47:1340–1347. doi: 10.1016/j.polymer.2005.12.066. DOI
Bai H., Zhang W., Deng H., Zhang Q., Qianf F. Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules. 2011;44:1233–1237. doi: 10.1021/ma102439t. DOI
Bhattacharjee S., Bhattacharya S. Orotic acid as a useful supramolecular synthon for the fabrication of an OPV based hydrogel: Stoichiometry dependent injectable behavior. Chem. Commun. 2015;51:6765–6768. doi: 10.1039/C5CC01002K. PubMed DOI
Jacquel N., Tajima K., Nakamura N., Miyagawa T., Pan P., Inoue Y. Effect of orotic acid as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. J. Appl. Polym. Sci. 2009;114:1287–1294. doi: 10.1002/app.30587. DOI
Jacquel N., Tajima K., Nakamura N., Kawichi H., Pan P., Inoue Y. Nucleation mechanism of polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexanoate) crystallized by orotic acid as a nucleating agent. J. Appl. Polym. Sci. 2010;115:709–715. doi: 10.1002/app.30873. DOI
Qiu Z., Li Z. Effect of Orotic Acid on the Crystallization Kinetics and Morphology of Biodegradable Poly(l-lactide) as an Efficient Nucleating Agent. Ind. Eng. Chem. Res. 2011;50:12299–12303. doi: 10.1021/ie2019596. DOI
Feng Y., Ma P., Xu P., Wang R., Dong W., Chen M., Joziasse C. The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Int. J. Biol. Macromol. 2018;106:955–962. doi: 10.1016/j.ijbiomac.2017.08.095. PubMed DOI
Tsui A., Frank C.W. Comparison of anhydrous and monohydrated forms of orotic acid as crystal nucleating agents for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymer. 2014;55:6364–6372. doi: 10.1016/j.polymer.2014.09.068. DOI
Tsuji H., Miyauchi S. Enzymatic hydrolysis of poly(lactide)s: Effects of molecular weight, L-lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules. 2001;2:597–604. doi: 10.1021/bm010048k. PubMed DOI
Tsuji H., Takai H., Fukuda N., Takikawa H. Non-Isothermal Crystallization Behavior of Poly(l-lactic acid) in the Presence of various Additives. Macromol. Mater. Eng. 2006;291:325–335. doi: 10.1002/mame.200500371. DOI
Stloukal P., Koutny M., Sedlarik V., Kucharczyk P. Mathematical Models and Methods in Modern Science. In: Mastorakis N., Mladenov V., Travieso-Gonzalez C.M., Kohler M., editors. Proceedings of the 2nd International Conference on Development, Energy, Environment, Economics, Factors Influencing Encapsulation Efficiency of Biologically Active Compound into PLA Submicroparticles; Puerto De La Cruz, Tenrife, Spain. 10–12 December 2011; Cambridge, UK: WSEAS Press; 2011.
Verney V., Michel A. Representation of the rheological properties of polymer melts in terms of complex fluidity. Rheol. Acta. 1989;28:54–60. doi: 10.1007/BF01354769. DOI
Marek A.A., Verney V. Rheological behavior of polyolefins during UV irradiation at high temperature as a coupled degradative process. Eur. Polym. J. 2015;72:1–11. doi: 10.1016/j.eurpolymj.2015.09.003. DOI
Palade L., Lehermeier H.J., Dorgan J.R. Melt rheology of high l-content poly(lactic acid) Macromolecules. 2001;34:1384–1390. doi: 10.1021/ma001173b. DOI
Dorgan J.R., Janzen J., Clayton M.P., Sukhendu H., Knauss D. Melt rheology of variable l-content poly(lactic acid) J. Rheol. 2005;49:607. doi: 10.1122/1.1896957. DOI
Stloukal P., Jandikova G., Koutny M., Sedlařík V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016;54:19–28. doi: 10.1016/j.polymertesting.2016.06.007. DOI
Avenel C., Gardette J.-L., Therias S., Disdier A., Raccurt O. Accelerated aging test of solar mirrors: Comparison of different UV chambers. AIP Conf. Proc. 2017;1850:130001.
Pekařová S., Dvořáčková M., Stloukal P., Ingr M., Šerá J., Koutny M. Quantitation of the inhibition effect of model compounds representing plant biomass degradation products on methane production. BioResources. 2017;12:2421–2432. doi: 10.15376/biores.12.2.2421-2432. DOI
Pan P., Kai W., Zhu B., Dong T., Inoue Y. Polymorphous crystallization and multiple melting behavior of Poly(l-lactide): Molecular weight dependence. Macromolecules. 2014;40:6898–6905. doi: 10.1021/ma071258d. DOI
Xiao H.W., Li P., Ren X., Jiang T., Yeh J.T. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc. J. Appl. Polym. Sci. 2010;118:3558–3569. doi: 10.1002/app.32728. DOI
Lemaire J., Arnaud R., Lacoste J. The prediction of the long-term photoageing of solid polymers. Acta Polym. 1988;39:27–32. doi: 10.1002/actp.1988.010390106. DOI
Bocchini S., Fukushima K., Blasio A.D., Fina A., Frache A., Geobaldo F. Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules. 2010;11:2919–2926. doi: 10.1021/bm1006773. PubMed DOI
Marra A., Cimmino S., Silvestre C. Effect of TiO2 and ZnO on PLA degradation in various media. Adv. Mater. Sci. 2017;2:1–8. doi: 10.15761/AMS.1000122. DOI
Stloukal P., Verney V., Commereuc S., Rychly J., Matisova-Rychla L., Pis V., Koutny M. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere. 2012;88:1214–1219. doi: 10.1016/j.chemosphere.2012.03.072. PubMed DOI