• This record comes from PubMed

Photodegradation and Biodegradation of Poly(Lactic) Acid Containing Orotic Acid as a Nucleation Agent

. 2019 Feb 04 ; 12 (3) : . [epub] 20190204

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA/FT/2018/009 Univerzita Tomáše Bati ve Zlíně
IGA/FT/2019/011 Univerzita Tomáše Bati ve Zlíně

Orotic acid is a natural heterocyclic compound that acts as a nucleation agent in poly(lactic acid) (PLA). PLA materials with increasing orotic acid content were prepared and characterized. It was found that crystallinity of about 28% was reached with 0.3% content of the agent. Further enhancement in the content of the agent did not provoke any additional significant increase of crystallinity. Subsequently, it was investigated whether the orotic acid content affected photodegradation of PLA and, in the next phase, its biodegradation. The results of rheological measurements showed that the compound slightly accelerates photodegradation of the material, which was accompanied by the cleavage of PLA chains. Previous photodegradation was shown to accelerate the subsequent biodegradation by shortening the lag phase of the process, where the explanation is probably in the reduction of the polymer molecular weight during the photodegradation. Moreover, the presence of orotic acid in both initial and photodegraded samples was found to influence biodegradation positively by shortening the lag phase and increasing the observed maximal rate of the biodegradation.

See more in PubMed

Blanco I. Lifetime prediction of polymer: To bet, or not bet—Is This the Question? Materials. 2018;11:1383. doi: 10.3390/ma11081383. PubMed DOI PMC

Tang H., Luan Y., Yang L., Sun H. A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities. Molecules. 2018;23:2870. doi: 10.3390/molecules23112870. PubMed DOI PMC

Sun H., Kabb C.P., Sims M.B., Sumerin B.S. Architecture-transformable polymers: Reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci. 2019;89:61–75. doi: 10.1016/j.progpolymsci.2018.09.006. DOI

Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: Real chance or law reliability? Chin. J. Polym. Sci. 2014;32:681–689. doi: 10.1007/s10118-014-1453-6. DOI

Rudnik E. Compostable Polymer Materials. 1st ed. Elsevier; Amsterdam, The Netherlands: 2007.

Auras R., Harte B., Selke S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004;4:835–864. doi: 10.1002/mabi.200400043. PubMed DOI

Gregorova A., Sedlarik V., Pastorek M., Jachandra H., Stelzer F. Effect of compatibilizing agent on the properties of highly crystalline composites based on poly(lactic acid) and wood flour and/or mica. J. Polym. Environ. 2011;19:372–381. doi: 10.1007/s10924-011-0292-6. DOI

Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008;26:246–265. doi: 10.1016/j.biotechadv.2007.12.005. PubMed DOI

Nofar M., Sacligil D., Carreau P.J., Kamal M.R., Heuzey M.C. Poly(lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019;125:307–360. doi: 10.1016/j.ijbiomac.2018.12.002. PubMed DOI

Garlotta D. A Literature review of poly(Lactic Acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI

Saeidlou S., Huneault M.A., Li H., Park C.B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012;37:1657–1677. doi: 10.1016/j.progpolymsci.2012.07.005. DOI

Harris A.M., Lee E.C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008;107:2246–2255. doi: 10.1002/app.27261. DOI

Perego G., Cella G.D., Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996;59:37–43. doi: 10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N. DOI

Jiang L., Shen T., Xu P., Zhao X., Li X., Dong W., Ma P., Chen M. Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. E-Polymers. 2016;16:1–13. doi: 10.1515/epoly-2015-0179. DOI

Li H., Huneault M.A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid) Polymers. 2007;48:6855–6866. doi: 10.1016/j.polymer.2007.09.020. DOI

Ma P., Xu Y., Wang D., Dong Q., Chen M. Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents. Ind. Eng. Chem. Res. 2014;53:12888–12892. doi: 10.1021/ie502211j. DOI

Cicala G., Giordano D., Tosto C., Filippone G., Recca A., Blanco I. Polylactide (PLA) filament a biobased solution for additive manufacturing: Correlating rheology and thermomechanical properties with printing quality. Materials. 2018;11:1191. doi: 10.3390/ma11071191. PubMed DOI PMC

Nam J.Y., Okamoto M., Okamoto H., Nakano M., Usuki A., Matsuda M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymers. 2006;47:1340–1347. doi: 10.1016/j.polymer.2005.12.066. DOI

Bai H., Zhang W., Deng H., Zhang Q., Qianf F. Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules. 2011;44:1233–1237. doi: 10.1021/ma102439t. DOI

Bhattacharjee S., Bhattacharya S. Orotic acid as a useful supramolecular synthon for the fabrication of an OPV based hydrogel: Stoichiometry dependent injectable behavior. Chem. Commun. 2015;51:6765–6768. doi: 10.1039/C5CC01002K. PubMed DOI

Jacquel N., Tajima K., Nakamura N., Miyagawa T., Pan P., Inoue Y. Effect of orotic acid as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. J. Appl. Polym. Sci. 2009;114:1287–1294. doi: 10.1002/app.30587. DOI

Jacquel N., Tajima K., Nakamura N., Kawichi H., Pan P., Inoue Y. Nucleation mechanism of polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexanoate) crystallized by orotic acid as a nucleating agent. J. Appl. Polym. Sci. 2010;115:709–715. doi: 10.1002/app.30873. DOI

Qiu Z., Li Z. Effect of Orotic Acid on the Crystallization Kinetics and Morphology of Biodegradable Poly(l-lactide) as an Efficient Nucleating Agent. Ind. Eng. Chem. Res. 2011;50:12299–12303. doi: 10.1021/ie2019596. DOI

Feng Y., Ma P., Xu P., Wang R., Dong W., Chen M., Joziasse C. The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Int. J. Biol. Macromol. 2018;106:955–962. doi: 10.1016/j.ijbiomac.2017.08.095. PubMed DOI

Tsui A., Frank C.W. Comparison of anhydrous and monohydrated forms of orotic acid as crystal nucleating agents for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymer. 2014;55:6364–6372. doi: 10.1016/j.polymer.2014.09.068. DOI

Tsuji H., Miyauchi S. Enzymatic hydrolysis of poly(lactide)s: Effects of molecular weight, L-lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules. 2001;2:597–604. doi: 10.1021/bm010048k. PubMed DOI

Tsuji H., Takai H., Fukuda N., Takikawa H. Non-Isothermal Crystallization Behavior of Poly(l-lactic acid) in the Presence of various Additives. Macromol. Mater. Eng. 2006;291:325–335. doi: 10.1002/mame.200500371. DOI

Stloukal P., Koutny M., Sedlarik V., Kucharczyk P. Mathematical Models and Methods in Modern Science. In: Mastorakis N., Mladenov V., Travieso-Gonzalez C.M., Kohler M., editors. Proceedings of the 2nd International Conference on Development, Energy, Environment, Economics, Factors Influencing Encapsulation Efficiency of Biologically Active Compound into PLA Submicroparticles; Puerto De La Cruz, Tenrife, Spain. 10–12 December 2011; Cambridge, UK: WSEAS Press; 2011.

Verney V., Michel A. Representation of the rheological properties of polymer melts in terms of complex fluidity. Rheol. Acta. 1989;28:54–60. doi: 10.1007/BF01354769. DOI

Marek A.A., Verney V. Rheological behavior of polyolefins during UV irradiation at high temperature as a coupled degradative process. Eur. Polym. J. 2015;72:1–11. doi: 10.1016/j.eurpolymj.2015.09.003. DOI

Palade L., Lehermeier H.J., Dorgan J.R. Melt rheology of high l-content poly(lactic acid) Macromolecules. 2001;34:1384–1390. doi: 10.1021/ma001173b. DOI

Dorgan J.R., Janzen J., Clayton M.P., Sukhendu H., Knauss D. Melt rheology of variable l-content poly(lactic acid) J. Rheol. 2005;49:607. doi: 10.1122/1.1896957. DOI

Stloukal P., Jandikova G., Koutny M., Sedlařík V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016;54:19–28. doi: 10.1016/j.polymertesting.2016.06.007. DOI

Avenel C., Gardette J.-L., Therias S., Disdier A., Raccurt O. Accelerated aging test of solar mirrors: Comparison of different UV chambers. AIP Conf. Proc. 2017;1850:130001.

Pekařová S., Dvořáčková M., Stloukal P., Ingr M., Šerá J., Koutny M. Quantitation of the inhibition effect of model compounds representing plant biomass degradation products on methane production. BioResources. 2017;12:2421–2432. doi: 10.15376/biores.12.2.2421-2432. DOI

Pan P., Kai W., Zhu B., Dong T., Inoue Y. Polymorphous crystallization and multiple melting behavior of Poly(l-lactide): Molecular weight dependence. Macromolecules. 2014;40:6898–6905. doi: 10.1021/ma071258d. DOI

Xiao H.W., Li P., Ren X., Jiang T., Yeh J.T. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc. J. Appl. Polym. Sci. 2010;118:3558–3569. doi: 10.1002/app.32728. DOI

Lemaire J., Arnaud R., Lacoste J. The prediction of the long-term photoageing of solid polymers. Acta Polym. 1988;39:27–32. doi: 10.1002/actp.1988.010390106. DOI

Bocchini S., Fukushima K., Blasio A.D., Fina A., Frache A., Geobaldo F. Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules. 2010;11:2919–2926. doi: 10.1021/bm1006773. PubMed DOI

Marra A., Cimmino S., Silvestre C. Effect of TiO2 and ZnO on PLA degradation in various media. Adv. Mater. Sci. 2017;2:1–8. doi: 10.15761/AMS.1000122. DOI

Stloukal P., Verney V., Commereuc S., Rychly J., Matisova-Rychla L., Pis V., Koutny M. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere. 2012;88:1214–1219. doi: 10.1016/j.chemosphere.2012.03.072. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...