Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
30774015
PubMed Central
PMC6379796
DOI
10.1177/1533033819830748
Knihovny.cz E-zdroje
- Klíčová slova
- classification, computer-aided diagnosis, texture analysis, thyroid, ultrasound,
- MeSH
- algoritmy * MeSH
- diagnóza počítačová metody MeSH
- diferenciální diagnóza MeSH
- interpretace obrazu počítačem metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- štítná žláza diagnostické zobrazování patologie MeSH
- support vector machine MeSH
- ultrasonografie metody MeSH
- uzly štítné žlázy klasifikace diagnostické zobrazování patologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by 2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to differentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.
Zobrazit více v PubMed
Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med. 1968;69(3):537–40. PubMed
Tunbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf). 1977;7(6):481–93. PubMed
Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med. 1997;126(3):226–231. PubMed
Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest. 2009;39(8):699–706. PubMed
Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351(17):1764–1771. PubMed
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid cancer. Thyroid. 2016;26(1):1–133. PubMed PMC
Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87(5):1941–1946. PubMed
Reza Rahbari LZ, Kebebew E. Thyroid cancer gender disparity. Future Oncol. 2010;6(11):1771–1779. PubMed PMC
Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid. 2015;25(5):538–550. PubMed PMC
Brito JP, Gionfriddo MR, Al Nofal A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(4):1253–1263. PubMed PMC
Sudarshan VK, Mookiah MRK, Acharya UR, et al. Application of wavelet techniques for cancer diagnosis using ultrasound images: a review. Comput Biol Med. 2016;69:97–111. PubMed
Acharya UR, Swapna G, Sree SV, et al. A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol Cancer Res Treat. 2014;13(4):289–301. PubMed
Sollini M, Cozzi L, Chiti A, Kirienko M. Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol. 2018;99:1–8. PubMed
Savelonas MA, Iakovidis DK, Dimitropoulos N, Maroulis D. Computational characterization of thyroid tissue in the radon domain. In: Kokol P, ed. Twentieth IEEE International Symposium on Computer-Based Medical Systems, 2007 CBMS ‘07. Maribor, Slovenia: IEEE Computer Society; 2007:189–192.
Ding JR, Cheng HD, Ning CP, Huang JH, Zhang YT. Quantitative measurement for thyroid cancer characterization based on elastography. J Ultras Med. 2011;30(9):1259–1266. PubMed
Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan algorithms. Technol Cancer Res Treat. 2011;10(4):371–380. PubMed
Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed. 2012;107(2):233–241. PubMed
Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan systems. Ultrasonics. 2012;52(4):508–520. PubMed
Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments. Med Phys. 2016;43(1):554–567. PubMed
Moon WJ, Jung SL, Lee JH, et al. Benign and malignant thyroid nodules: US differentiation – multicenter retrospective study. Radiology. 2008;247(3):762–770. PubMed
Moon WJ, Baek JH, Jung SL, et al. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol. 2011;12(1):1–14. PubMed PMC
Acharya UR, Chowriappa P, Fujita H, et al. Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowl-Based Syst. 2016;107:235–245.
Paula Branco LT, Ribeiro R. A survey of predictive modelling under imbalanced distributions. ACM Comput Surveys. 2016;49:31–48.
Chang CY, Huang HC, Chen SJ. Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed Eng-App Bas C. 2010;22(2):81–89.
Chang CY, Chen SJ, Tsai MF. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images. Pattern Recogn. 2010;43(10):3494–3506.
Costa AF Humpire-Mamani, Traina Gabriel Agma JM. An efficient algorithm for fractal analysis of textures In: Menotti D, Nazare AC, Jr, eds. Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images. Ouro Preto, Brasil: IEEE Computer Society; 2012:39–46.
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Systems Man Cybernet. 1979;9(1):62–66.
Chen YQ, Nixon MS, Thomas DW. Statistical geometrical features for texture classification. Pattern Recogn. 1995;28(4):537–552.
Ping-Sung Liao T-SC, Chung P-C. A fast algorithm for multilevel thresholding. J Inf Sci Eng. 2001;17:713–727.
Schroeder M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Mineola, NY: Dover Publications; 2009.
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–297.
Sanchez VD. Advanced support vector machines and kernel methods. Neurocomputing. 2003;55(1-2):5–20.
Fernandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15(Oct):3133–3181.
Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G. Morphological and wavelet features towards sonographic thyroid nodules evaluation. Comput Med Imaging Graph. 2009;33(2):91–99. PubMed
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26. PubMed
Breiman LFJ, Olshen RA, Stone CJ. Classification and Regression Trees. Monterrey, CA: Wadsworth and Brooks; 1984.
Boulesteix AL, Janitza S, Kruppa J, Konig IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wires Data Min Knowl. 2012;2(6):493–507.
Joachims T. Learning to Classify Text Using Support Vector Machines. Alphen aan den Rijn, Netherlands: Kluwer; 2002.
Kim SY, Kim EK, Moon HJ, Yoon JH, Kwak JY. Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray-scale ultrasound and elastography. Am J Roentgenol. 2015;205(3):W343–W351. PubMed
Tsantis S, Dimitropoulos N, Cauouras D, Nikiforidis G. A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Comput Meth Prog Biol. 2006;84(2-3):86–98. PubMed