• This record comes from PubMed

Taming extreme morphological variability through coupling of molecular phylogeny and quantitative phenotype analysis as a new avenue for taxonomy

. 2019 Feb 20 ; 9 (1) : 2429. [epub] 20190220

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30787369
PubMed Central PMC6382794
DOI 10.1038/s41598-019-38875-2
PII: 10.1038/s41598-019-38875-2
Knihovny.cz E-resources

Identification of animals is often hindered by decoupling of phenotypic and molecular evolutionary rates. The Acanthocyclops vernalis (Fischer, 1853) complex is arguably the most problematic group of cyclopoids and possibly of all copepods, with diversity estimates based on morphology ranging from 2 to 34 taxa. We reconstructed their phylogeny based on one nuclear and three mitochondrial markers, revealing only four species in the Holarctic and always the following sister-species pairs: vernalis-europensis sp. nov. and robustus-americanus. Landmarks for quantitative shape analyses were collected from 147 specimens on five structures commonly used to delineate cyclopoids. Procrustes ANOVA showed small directional asymmetry in all datasets, but large sexual dimorphism in shape and size. Allometry was also highly significant. Principal component analyses of size-corrected data almost completely separated species in morphospace based on the last exopodal and endopodal segments of the fourth leg. These two structures showed the highest amount of covariation, while modularity could not be proven and a phylogenetic signal was only observed in one structure. Spinules and sensilla have a limited use in delineating species here. Calculating mean shapes and the extent of inter and intraspecific phenotypic variability opens new horizons for modern taxonomy.

See more in PubMed

Klingenberg CP. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry. 2015;7:843–934. doi: 10.3390/sym7020843. DOI

Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Gen. Evo. 2016;226:113–137. doi: 10.1007/s00427-016-0539-2. PubMed DOI PMC

Collyer M, Adams DC. Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix It. J. Mammol. 2013;24:75–83.

Meloro C, Elton S, Louys J, Bishop LC, Ditchfield P. Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora) Paleobiology. 2013;39:323–344. doi: 10.1666/12001. DOI

Sanger TJ, et al. Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution. 2013;67:2180–2193. doi: 10.1111/evo.12100. PubMed DOI

Klingenberg CP, McIntyre GS. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution. 1998;52:1363–1375. doi: 10.1111/j.1558-5646.1998.tb02018.x. PubMed DOI

Klingenberg CP, Barluenga M, Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution. 2002;56:1909–1920. doi: 10.1111/j.0014-3820.2002.tb00117.x. PubMed DOI

Andújar C, Arribas P, Ruiz C, Serrano J, Gómez-Zurita J. Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation of Mesocarabus (Coleoptera: Carabidae) Mol. Ecol. 2014;23:4344–4361. doi: 10.1111/mec.12793. PubMed DOI

Schwarzfeld M, Sperling F. Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae) ZooKeys. 2014;462:59–114. doi: 10.3897/zookeys.462.8229. PubMed DOI PMC

Zúñiga-Reinoso Á, Benítez HA. The overrated use of the morphological cryptic species concept: An example with Nyctelia darkbeetles (Coleoptera: Tenebrionidae) using geometric morphometrics. Zool. Anz. 2015;255:47–53. doi: 10.1016/j.jcz.2015.01.004. DOI

Karanovic T, Lee S, Lee W. Instant taxonomy: choosing adequate characters for species delimitation and description through congruence between molecular data and quantitative shape analysis. Invert. Syst. 2018;32:551–580. doi: 10.1071/IS17002. DOI

Karanovic T, Djurakic M, Eberhard SM. Cryptic species or inadequate Taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst. Biol. 2016;65:304–327. doi: 10.1093/sysbio/syv088. PubMed DOI

Fryer G. An ecological validation of a taxonomic distinction: the ecology of Acanthocyclops vernalis and A. robustus (Crustacea: Copepoda) Zool. J. Linn. Soc. 1985;84:165–180. doi: 10.1111/j.1096-3642.1985.tb01797.x. DOI

Dussart, B. & Defaye, D. World Directory of Crustacea Copepoda of Inland Waters. II - Cyclopiformes (Backhuys Publishers, 2006).

Caramujo MJ, Boavida MJ. Acanthocyclops robustus external morphology: How many morphs? Verhandl. Intern. Vereinig. Theor. Angew. Limn. 1998;26:1904–1912.

Dodson SI, Grishanin AK, Gross K, Wyngaard GA. Morphological analysis of some cryptic species in the Acanthocyclops vernalis species complex from North America. Hydrobiologia. 2003;500:131–143. doi: 10.1023/A:1024678018090. DOI

Boxshall, G.A. & Halsey, S.H. An Introduction to Copepod Diversity. (The Ray Society, 2004).

Purasjoki K, Viljamaa H. Acanthocyclops robustus (Copepoda, Cyclopoida) in plankton of the Helsinki Sea area, and a morphological comparison between A. robustus and A. vernalis. Finn. Mar. Res. 1984;250:33–44.

Lescher-Moutoué F. Seasonal variations in size and morphology of Acanthocyclops robustus (Copepoda Cyclopoida) J. Plankt. Res. 1996;18:907–922. doi: 10.1093/plankt/18.6.907. DOI

Kiefer, F. Freilebende Copepoda. Das Zooplankton der Binnengewässer, Binnengewässer 2. Teil 26(2) (eds Kiefer, F. & Fryer, D.) 1–380 (Nägele und Obermiller, 1978).

Einsle, U. Copepoda: Cyclopoida Genera Cyclops, Megacyclops, Acanthocyclops; Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 10. (SPB Academic Publishing, 1996).

Cryer M, Townsend CR. Generation time of Acanthocyclops robustus in relation to food availability and temperature in a shallow eutrophic lake. Hydrobiologia. 1989;182:93–97. doi: 10.1007/BF00006035. DOI

Berthon JL. Comparaison de la biomasse et du contenu énergétique d’un Copépode planctonique: Acanthocyclops vernalis (Fischer 1853) Hydrobiologia. 1985;123:223–231. doi: 10.1007/BF00034383. DOI

Reed EB. Esteval phenology of an Acanthocyclops (Crustacea, Copepoda) in a Colorado tarn with remarks on the vernalis-robustus complex. Hydrobiologia. 1986;139:127–133. doi: 10.1007/BF00028096. DOI

Andreadis TG, Gere MA. Laboratory evaluation of Acanthocyclops vernalis and Diacyclops bicuspidatus thomasi (Copepoda: Cyclopidae) as predators of Aedes canadensis and Ae. stimulans (Diptera: Culicidae) J. Med. Entomol. 1992;29:974–979. doi: 10.1093/jmedent/29.6.974. PubMed DOI

Hubbard IM, Hill-Spanik KM, Knott D, de Buron I. Development of Anguillicoloides crassus in a cyclopoid copepod from the Acanthocyclops robustus-americanus-vernalis complex in South Carolina, USA. Comp. Paras. 2016;83:192–196. doi: 10.1654/4835sed.1. DOI

Houssou AM, Daguegue EJ, Montchowui E. Lethal and sub-lethal effects of cypermethrin and glyphosate on the freshwater’s copepod, Acanthocyclops robustus. Invert. Surv. J. 2017;14:140–148. doi: 10.15298/invertzool.14.2.07. DOI

Caramujo MJ, Boavida MJ. Characteristics of the reproductive cycles and development times of Copidodiaptomus numidicus (Copepoda: Calanoida) and Acanthocyclops robustus (Copepoda: Cyclopoida) J. Plankt. Res. 1999;21:1765–1778. doi: 10.1093/plankt/21.9.1765. DOI

Enriquez-Garcia C, Nandini S, Sarma SSS. Feeding behaviour of Acanthocyclops americanus (Marsh) (Copepoda: Cyclopoida) J. Nat. Hist. 2013;47:853–862. doi: 10.1080/00222933.2012.747637. DOI

Morris MJ, Kohlhage K, Gust G. Mechanics and energetics of swimming in the small copepod Acanthocyclops robustus (Cyclopoida) Mar. Biol. Berlin. 1990;107:83–91. doi: 10.1007/BF01313245. DOI

Grishanin AK, Rasch EM, Dodson SI, Wyngaard GA. Genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Crustacea: Copepoda). II. Crossbreeding experiments, cytogenetics, and a model of chromosomal evolution. Evolution. 2006;60:247–256. PubMed

Yang, W. X., Mirabdullayev, I., Dahms, H. U. & Hwang, J. S. Karyology of Acanthocyclops Kiefer, 1927 (Copepoda, Cyclopoida), including the first karyological reports on Acanthocyclops trajani Mirabdullayev & Defaye, 2002, and A. einslei Mirabdullayev & Defaye, 2004. Crustaceana82, 487–492 (2009).

Standiford M. The effects of chromatin diminution on the pattern of C-banding in the chromosome of Acanthocyclops vernalisFischer (Copepoda: Crustacea) Genetica Dordrecht. 1989;79:207–214. doi: 10.1007/BF00121514. DOI

Petkovski TKR. von Acanthocyclops-Formen der vernalis-Gruppe aus Jugoslawien (Crustacea, Copepoda) Acta Mus. Mac. Sci. Nat. Skopje. 1975;14:93–142.

Kiefer FR. der robustus-vernalis-Gruppe der Gattung Acanthocyclops Kiefer (Crustacea, Copepoda) (mit eingehender Beurteilung des ‘Cyclops americanus Marsh, 1892’) Beitr. Naturkun. Forsch. Südwestdeutschl. 1976;35:95–110.

Mirabdullayev IM, Defaye D. On the taxonomy of the Acanthocyclops robustus species-complex (Copepoda, Cyclopidae): Acanthocyclops brevispinosus and A. einslei sp. n. Vest. Zool. 2004;38:27–37.

Fischer SB. zur Kenntnis der in der Umgegend von St. Petersburg sich findenden Cyclopiden (Fortsetzung) Bull. Soc. Impé. Natur. Moscou. 1853;26:74–100.

Sars GO. Oversigt af de indenlandske Ferskvandscopepoder. Forhandl. Videnskabs-Selskabet i Christiana. 1863;1862:212–262.

Marsh CD. On the Cyclopidae and Calanidae of central Wisconsin. Trans. Wisconsin Acad. Sci. Arts Lett. 1893;9:189–224.

Price JL. Cryptic speciation in the vernalis group of Cyclopidae. Can. J. Zool. 1958;36:285–303. doi: 10.1139/z58-027. DOI

Bláha M, Hulák M, Slouková J, Těšitel J. Molecular and morphological patterns across Acanthocyclops vernalis-robustus species complex (Copepoda, Cyclopoida) Zool. Scripta. 2010;39:259–268. doi: 10.1111/j.1463-6409.2010.00422.x. DOI

Miracle MR, Alekseev V, Monchenko V, Setandreu V, Vicente E. Molecular-genetic-based contribution to the taxonomy of the Acanthocyclops robustus group. J. Nat. Hist. 2013;47:5–12. doi: 10.1080/00222933.2012.744432. DOI

Platnick NI. The information content of taxon names: a reply to de Queiroz and Donoghue. Syst. Biol. 2013;62:175–176. doi: 10.1093/sysbio/sys059. PubMed DOI

Mace GM. The role of taxonomy in species conservation. Phil. Trans. Royal Soc. London B. 2004;359:711–719. doi: 10.1098/rstb.2003.1454. PubMed DOI PMC

Pante E, Schoelinck C, Puillandre N. From integrative taxonomy to species description: One step beyond. Syst. Biol. 2015;64:152–160. doi: 10.1093/sysbio/syu083. PubMed DOI

Brower AZ. Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Syst. Biodivers. 2010;8:485–491. doi: 10.1080/14772000.2010.534512. DOI

Delić T, Trontelj P, Rendoš M, Fišer C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 2017;7:3391. doi: 10.1038/s41598-017-02938-z. PubMed DOI PMC

Hołyńska M. Is the spinule pattern on the leg 4 coxopodite a tactile signal in the specific mate recognition system of Mesocyclops (Copepoda, Cyclopidae)? Hydrobiologia. 2000;417:11–24. doi: 10.1023/A:1003875912789. DOI

Karanovic T, Kim K. Suitability of cuticular pores and sensilla for harpacticoid copepod species delineation and phylogenetic reconstruction. Arthropod Struct. Dev. 2014;43:615–658. doi: 10.1016/j.asd.2014.09.003. PubMed DOI

Klingenberg CP. Evolution and development of shape: Integrating quantitative approaches. Nat. Rev. Genet. 2010;11:623–635. doi: 10.1038/nrg2829. PubMed DOI

Einsle U. Untersuchungen zum Auftreten von Acanthocyclops robustus (Crust. Cop.) im Bodensee-Obersee. Arch. Hydrobiol. 1977;79:382–396.

Xiang X-L, Xi Y-L, Wen X-L, Ge Y-L. Molecular phylogeny and population genetic differentiation patterns in Brachionus calyciflorus Pallas (Rotifera) complex from two lakes in China. Intern. J. Limnol. 2017;53:401–410. doi: 10.1051/limn/2017024. DOI

Smyly WJP. Seasonal variation in length of furcal rami in the subgenus Eucyclops (Cyclopidae) Ann. Mag. Nat. Hist. Zool. 1955;12:636–638. doi: 10.1080/00222935508655676. DOI

Hamrova E, Krajicek M, Karanovic T, Cerny M, Petrusek A. Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes. Zool. J. Linn. Soc. 2012;166:754–767. doi: 10.1111/j.1096-3642.2012.00864.x. DOI

Peterson DL, et al. Reproductive and phylogenetic divergence of tidepool copepod populations across a narrow geographical boundary in Baja California. J. Biogeogr. 2013;40:1664–1675. doi: 10.1111/jbi.12107. DOI

Handschumacher L, Steinarsdóttir MB, Edmands S, Ingólfsson A. Phylogeography of the rock-pool copepod Tigriopus brevicornis (Harpacticoida) in the northern North Atlantic, and its relationship to other species of the genus. Mar. Biol. 2010;157:1357–1366. doi: 10.1007/s00227-010-1415-7. DOI

Klingenberg CP, McIntyre HS, Zaklan SD. Left-right asymmetry of fly wings and the evolution of body axes. Proc. Royal Soc. B. 1998;265:1255–1259. doi: 10.1098/rspb.1998.0427. PubMed DOI PMC

Benítez HA, Lemic D, Bažok R, Gallardo-Araya CM, Mikac KM. Evolutionary directional asymmetry and shape variation in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae): an example using hind wings. Biol. J. Linn. Soc. 2014;111:110–118. doi: 10.1111/bij.12194. DOI

Sidlauskas BL, Mol JH, Vari RP. Dealing with allometry in linear and geometric morphometrics: a taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zool. J. Linn. Soc. 2011;162:103–130. doi: 10.1111/j.1096-3642.2010.00677.x. DOI

Folmer O, Black M, Hoeh W, Lutz R, Vrijenoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed

Merritt TJ, et al. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Mol. Mar. Biol. Biotechnol. 1998;7:7–11. PubMed

Machida RJ, Miya MU, Nishida M, Nishida S. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene. 2004;332:113–131. doi: 10.1016/j.gene.2004.01.019. PubMed DOI

Chu KH, Li CP, Ho HY. The first Internal Transcribed Spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea. Mar. Biotechnol. 2001;3:355–361. doi: 10.1007/s10126001-0014-5. PubMed DOI

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;15:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Librado P, Rozas J. DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4 (Sinauer Associates, Sunderland, MA, USA, 2002).

Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Stamatakis A. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214. PubMed DOI PMC

Gernhard T. The conditioned reconstructed process. J. Theor. Biol. 2008;253:769–778. doi: 10.1016/j.jtbi.2008.04.005. PubMed DOI

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylognetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Rohlf, J. F. tpsDIG 2: software for digitization of landmarks and outlines, version 2.17, http://life.bio.sunysb.edu/ee/rohlf/software.html (2013).

Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Res. 2011;11:353–357. doi: 10.1111/j.1755-0998.2010.02924.x. PubMed DOI

Drake AG, Klingenberg CP. The pace of morphological change: Historical transformation of skull shape in St. Bernard dogs. Proc. Royal Soc. London B. 2008;275:71–76. doi: 10.1098/rspb.2007.1169. PubMed DOI PMC

Klingenberg CP. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a-priori hypotheses. Evol. Develop. 2009;11:405–421. doi: 10.1111/j.1525-142X.2009.00347.x. PubMed DOI PMC

Klingenberg CP, Gidaszewski NA. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 2010;59:245–261. doi: 10.1093/sysbio/syp106. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...