• This record comes from PubMed

Rapid and Sensitive Determination of Branched-Chain Amino Acids in Human Plasma by Capillary Electrophoresis with Contactless Conductivity Detection for Physiological Studies

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Capillary electrophoresis (CE) with contactless conductivity detection (C4D) represents a strong tool for determining amino acids in clinical samples. This chapter provides detailed instructions for CE/C4D determination of the branched-chain amino acids (BCAAs) valine, isoleucine, and leucine in human plasma, which can be readily employed in physiological studies. Baseline separation of all the BCAAs is achieved on a short separation length equal to 18 cm in optimized background electrolyte consisting of 3.2 M acetic acid dissolved in 20% v/v methanol with addition of 1.0% v/v INST-coating solution. The analysis time does not exceed 3 min and the limit of detection is 0.4 μM for all BCAAs. The pretreatment of human plasma is very simple and is based on fourfold plasma dilution by acetonitrile and subsequent filtration. Only 50 μL of plasma is used for the analysis. The high sensitivity of the CE/C4D method is achieved by injecting a large volume of sample, combined with application of negative pressure to flush the acetonitrile zone out of the capillary.

See more in PubMed

Singh BK, Shaner DL (1995) Biosynthesis of branched-chain amino-acids - from test-tube to field. Plant Cell 7(7):935–944 PubMed PMC

Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA (2007) Harper’s illustrated biochemistry, Chapter 28 and 33., 29th edn. McGraw-Hill Lange, China

Adeva MM, Calvino J, Souto G, Donapetry C (2012) Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 43(1):171–181 PubMed

Devlin TM (1992) Biochemistry with clinical correlations. Wiley-Liss, New York

Tazi EM, Errihani H (2010) Treatment of cachexia in oncology. Indian J Palliat Care 16(3):129–137 PubMed PMC

Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–U483 PubMed PMC

Hušek P, Šimek P, Hartvich P, Zahradníčková H (2008) Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis. J Chromatogr A 1186(1–2):391–400 PubMed

Kand’ár R, Žaková P, Jirošová J, Sladká M (2009) Determination of branched chain amino acids, methionine, phenylalanine, tyrosine and alpha-keto acids in plasma and dried blood samples using HPLC with fluorescence detection. Clin Chem Lab Med 47(5):565–572 PubMed

Sharma G, Attri SV, Behra B, Bhisikar S, Kumar P, Tageja M, Sharda S, Singhi P, Singhi S (2014) Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory. Amino Acids 46(5):1253–1263 PubMed

Kubáň P, Hauser PC (2017) Contactless conductivity detection for analytical techniques developments from 2014 to 2016. Electrophoresis 38(1):95–114 PubMed

Kubáň P, Hauser PC (2015) Contactless conductivity detection for analytical techniques-developments from 2012 to 2014. Electrophoresis 36(1):195–211 PubMed

Kubáň P, Hauser PC (2013) Contactless conductivity detection for analytical techniques: developments from 2010 to 2012. Electrophoresis 34(1):55–69 PubMed

Coufal P, Zuska J, van de Goor T, Smith V, Gaš B (2003) Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection. Electrophoresis 24(4):671–677 PubMed

Tůma P, Málková K, Samcová E, Štulík K (2010) Rapid monitoring of arrays of amino acids in clinical samples using capillary electrophoresis with contactless conductivity detection. J Sep Sci 33(16):2394–2401 PubMed

Tůma P, Gojda J (2015) Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 36(16):1969–1975 PubMed

Tůma P, Jaček M, Fejfarová V, Polák J (2016) Electrophoretic stacking for sensitive determination of antibiotic ceftazidime in human blood and microdialysates from diabetic foot. Anal Chim Acta 942:139–145 PubMed

Guder WG, Narayanan S, Wisser H, Zawta B (2009) Diagnostic samples: from the patient to the laboratory. Wiley-VCH, Weinheim

Lauer HH, Rozing GP (2010) High performance capillary electrophoresis. Agilent Technologies, Germany

Tůma P (2014) Rapid determination of globin chains in red blood cells by capillary electrophoresis using INSTCoated fused-silica capillary. J Sep Sci 37(8):1026–1032 PubMed

Křivánková L, Pantůčková P, Boček P (1999) Isotachophoresis in zone electrophoresis. J Chromatogr A 838(1–2):55–70

Kubáň P, Hauser PC (2009) Ten years of axial capacitively coupled contactless conductivity detection for CZE - a review. Electrophoresis 30(1):176–188 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...